Summary: | We investigate the problem of obtaining dense 3D reconstruction from airborne multi-aspect synthetic aperture radar (SAR) image sequences. Dense 3D reconstructions of multi-view SAR images are vulnerable to anisotropic scatters. To address this issue, we propose a probabilistic 3D reconstruction method based on jointly estimating the pixel’s height and degree of anisotropy. Specifically, we propose a mixture distribution model for the stereo-matching results, where the degree of anisotropy is modeled as an underlying error source. Then, a Bayesian filtering method is proposed for dense 3D point cloud generation. For real-time applications, redundancy in multi-aspect observations is further exploited in a probabilistic manner to accelerate the stereo-reconstruction process. To verify the effectiveness and reliability of the proposed method, 3D point cloud generation is tested on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>Ku</mi></semantics></math></inline-formula>-band drone SAR data for a domestic airport area.
|