A. caviae infection triggers IL-1β secretion through activating NLRP3 inflammasome mediated by NF-κB signaling pathway partly in a TLR2 dependent manner

Aeromonas caviae, an important food-borne pathogen, induces serious invasive infections and inflammation. The pro-inflammatory IL-1β functions against pathogenic infections and is elevated in various Aeromonas infection cases. However, the molecular mechanism of A. caviae-mediated IL-1β secretion re...

Full description

Bibliographic Details
Main Authors: Qiankun Yang, Jianguo Zhang, Feixue Liu, Huizhen Chen, Wei Zhang, Haitao Yang, Nana He, Jingquan Dong, Panpan Zhao
Format: Article
Language:English
Published: Taylor & Francis Group 2022-12-01
Series:Virulence
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/21505594.2022.2116169
Description
Summary:Aeromonas caviae, an important food-borne pathogen, induces serious invasive infections and inflammation. The pro-inflammatory IL-1β functions against pathogenic infections and is elevated in various Aeromonas infection cases. However, the molecular mechanism of A. caviae-mediated IL-1β secretion remains unknown. In this study, mouse macrophages (PMs) were used to establish A. caviae infection model and multiple strategies were utilized to explore the mechanism of IL-1β secretion. IL-1β was elevated in A. caviae infected murine serum, PMs lysates or supernatants. This process triggered NLRP3 levels upregulation, ASC oligomerization, as well as dot gathering of NLRP3 and speck-like signals of ASC in the cytoplasm. MCC950 blocked A. caviae mediated IL-1β release. Meanwhile, NLRP3 inflammasome mediated the release of IL-1β in dose- and time-dependent manners, and the release of IL-1β was dependent on active caspase-1, as well as NLRP3 inflammasome was activated by potassium efflux and cathepsin B release ways. A. caviae also enhanced TLR2 levels, and deletion of TLR2 obviously decreased IL-1β secretion. What’s more, A. caviae resulted in NF-κB p65 nuclear translocation partly in a TLR2-dependent manner. Blocking NF-κB using BAY 11-7082 almost completely inhibited NLRP3 inflammasome first signal pro-IL-1β expression. Blocking TLR2, NF-κB, NLRP3 inflammasome significantly downregulated IL-1β release and TNF-α and IL-6 levels. These data illustrate that A. caviae caused IL-1β secretion in PMs is controlled by NLRP3 inflammasome, of which is mediated by NF-κB pathway and is partially dependent on TLR2, providing basis for drugs against A. caviae.
ISSN:2150-5594
2150-5608