High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice

Blood formation by hematopoietic stem cells (HSCs) is regulated by a still incompletely defined network of general and HSC-specific regulators. In this study, we analyzed the role of G-protein coupled receptor 56 (Gpr56) as a candidate HSC regulator based on its differential expression in quiescent...

Full description

Bibliographic Details
Main Authors: Tata Nageswara Rao, Jonathan Marks-Bluth, Jessica Sullivan, Manoj K. Gupta, Vashe Chandrakanthan, Simon R. Fitch, Katrin Ottersbach, Young C. Jang, Xianhua Piao, Rohit N. Kulkarni, Thomas Serwold, John E. Pimanda, Amy J. Wagers
Format: Article
Language:English
Published: Elsevier 2015-05-01
Series:Stem Cell Research
Online Access:http://www.sciencedirect.com/science/article/pii/S1873506115000288
Description
Summary:Blood formation by hematopoietic stem cells (HSCs) is regulated by a still incompletely defined network of general and HSC-specific regulators. In this study, we analyzed the role of G-protein coupled receptor 56 (Gpr56) as a candidate HSC regulator based on its differential expression in quiescent relative to proliferating HSCs and its common targeting by core HSC regulators. Detailed expression analysis revealed that Gpr56 is abundantly expressed by HSPCs during definitive hematopoiesis in the embryo and in the adult bone marrow, but its levels are reduced substantially as HSPCs differentiate. However, despite enriched expression in HSPCs, Gpr56-deficiency did not impair HSPC maintenance or function during steady-state or myeloablative stress-induced hematopoiesis. Gpr56-deficient HSCs also responded normally to physiological and pharmacological mobilization signals, despite the reported role of this GPCR as a regulator of cell adhesion and migration in neuronal cells. Moreover, Gpr56-deficient bone marrow engrafted with equivalent efficiency as wild-type HSCs in primary recipients; however, their reconstituting ability was reduced when subjected to serial transplantation. These data indicate that although GPR56 is abundantly and selectively expressed by primitive HSPCs, its high level expression is largely dispensable for steady-state and regenerative hematopoiesis.
ISSN:1873-5061
1876-7753