Increasing bacterial cellulose compression resilience with glycerol or PEG400 for robuster engineered living materials.

Bacterial cellulose (BC) is one of the current natural materials at the edge of innovation in engineered living materials (ELMs) research due to its ease of growth and outstanding properties as a hydrogel. One of the main limitations of this material, however, is its quick dehydration in open enviro...

Full description

Bibliographic Details
Main Authors: Joaquin Caro-Astorga, Koon-Yang Lee, Tom Ellis
Format: Article
Language:English
Published: Elsevier 2022-12-01
Series:Carbohydrate Polymer Technologies and Applications
Online Access:http://www.sciencedirect.com/science/article/pii/S2666893922000639
Description
Summary:Bacterial cellulose (BC) is one of the current natural materials at the edge of innovation in engineered living materials (ELMs) research due to its ease of growth and outstanding properties as a hydrogel. One of the main limitations of this material, however, is its quick dehydration in open environments as water molecules leave the porous network. Here we show that other solvents with higher evaporation temperatures, namely glycerol and polyethylene glycol (PEG), can play the same role as water within the BC structure interacting with cellulose fibres via hydrogen bonds. We demonstrate that these molecules provide up to a 130-fold improvement in the Young´s Modulus of BC hydrogels to compression forces in a concentration dependent manner. To take advantage of these effects for application in BC-based ELMs produced by Komagataeibacter rhaeticus, we also explored the effect of glycerol and PEG400 on the survival of the BC-producing bacteria in BC pieces. PEG400 at 20% doubled the material resilience to compression forces, still allowing bacteria to survive within the material for weeks. These results open further opportunities to explore new applications and stacked storage conditions.
ISSN:2666-8939