Elucidating the Inhibitory Effect of Resveratrol and Its Structural Analogs on Selected Nucleotide-Related Enzymes

Resveratrol, the most widely studied natural phytochemical, has been shown to interact with different target proteins. Previous studies show that resveratrol binds and inhibits DNA polymerases and some other enzymes; however, the binding and functioning mechanisms remain unknown. The elucidated know...

Full description

Bibliographic Details
Main Authors: Yifei Wu, Tze-chen Hsieh, Joseph M. Wu, Xiaoxiao Wang, Joshua S. Christopher, Amanda H. Pham, Justin David-Li Swaby, Lei Lou, Zhong-Ru Xie
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/10/9/1223
Description
Summary:Resveratrol, the most widely studied natural phytochemical, has been shown to interact with different target proteins. Previous studies show that resveratrol binds and inhibits DNA polymerases and some other enzymes; however, the binding and functioning mechanisms remain unknown. The elucidated knowledge of inhibitory mechanisms of resveratrol will assist us in new drug discovery. We utilized molecular docking and molecular dynamics (MD) simulation to reveal how resveratrol and structurally similar compounds bind to various nucleotide-dependent enzymes, specifically, DNA polymerases, HIV-1 reverse transcriptase, and ribonucleotide reductase. The results show that resveratrol and its analogs exert their inhibitory effects by competing with the substrate dNTPs in these enzymes and blocking elongation of chain polymerization. In addition, the results imply that resveratrol binds to a variety of other ATP-/NTP-binding proteins.
ISSN:2218-273X