The Multifunctional Nuclear Magnetic Flowmeter for Control to the Consumption and Condition of Coolant in Nuclear Reactors

The necessity of coolant flow consumption measurement accuracy increase in the nuclear reactor primary circuit has been substantiated. Additionally, the need to control the coolant condition in the current flow inside the pipeline is shown. Nowadays, the real-time coolant’s condition control functio...

Full description

Bibliographic Details
Main Authors: Roman Davydov, Vadim Davydov, Nikita Myazin, Valentin Dudkin
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/5/1748
Description
Summary:The necessity of coolant flow consumption measurement accuracy increase in the nuclear reactor primary circuit has been substantiated. Additionally, the need to control the coolant condition in the current flow inside the pipeline is shown. Nowadays, the real-time coolant’s condition control function is not implemented at stationary nuclear power plants or mobile nuclear power plants used in moving objects. It is shown that a coolant consumption measurement error decreases and its condition data availability increases the heat transfer efficiency and the electrical energy generation (without the nuclear reactor and steam generator design change). Problems arising during coolant consumption control using various flowmeters models in the nuclear reactor primary circuit are considered. It has been found that nuclear magnetic flowmeters can solve these problems. New difficulties are noted as emerging when using pulsed nuclear magnetic flowmeters designs developed for measuring hydrocarbons, water, biological compounds consumption, and condition control. A new nuclear magnetic flowmeter design has been developed using a modulation technique for nuclear magnetic resonance signal recording. Methods for measuring the coolant flow’s longitudinal <i>T</i><sub>1</sub> and transverse <i>T</i><sub>2</sub> relaxation times are presented. Investigations of coolant flow parameters (consumption and relaxation times) inside the pipeline have been carried out. It is found that the measurement error for these parameters does not exceed 1%. The prospects of using the developed nuclear magnetic flowmeter-relaxometer design in the nuclear reactor first circuit are shown.
ISSN:1996-1073