Summary: | We present a quantum algorithm to achieve higher-order transformations of Hamiltonian dynamics. Namely, the algorithm takes as input a finite number of queries to a black-box seed Hamiltonian dynamics to simulate a desired Hamiltonian. Our algorithm efficiently simulates linear transformations of any seed Hamiltonian with a bounded energy range consisting of a polynomial number of terms in system size, making use of only controlled-Pauli gates and time-correlated randomness. This algorithm is an instance of quantum functional programming, where the desired function is specified as a concatenation of higher-order quantum transformations. By way of example, we demonstrate the simulation of negative time-evolution and time-reversal, and perform a Hamiltonian learning task.
|