Bio-Molecular Applications of Recent Developments in Optical Tweezers
In the past three decades, the ability to optically manipulate biomolecules has spurred a new era of medical and biophysical research. Optical tweezers (OT) have enabled experimenters to trap, sort, and probe cells, as well as discern the structural dynamics of proteins and nucleic acids at single m...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-01-01
|
Series: | Biomolecules |
Subjects: | |
Online Access: | http://www.mdpi.com/2218-273X/9/1/23 |
_version_ | 1818944756398424064 |
---|---|
author | Dhawal Choudhary Alessandro Mossa Milind Jadhav Ciro Cecconi |
author_facet | Dhawal Choudhary Alessandro Mossa Milind Jadhav Ciro Cecconi |
author_sort | Dhawal Choudhary |
collection | DOAJ |
description | In the past three decades, the ability to optically manipulate biomolecules has spurred a new era of medical and biophysical research. Optical tweezers (OT) have enabled experimenters to trap, sort, and probe cells, as well as discern the structural dynamics of proteins and nucleic acids at single molecule level. The steady improvement in OT’s resolving power has progressively pushed the envelope of their applications; there are, however, some inherent limitations that are prompting researchers to look for alternatives to the conventional techniques. To begin with, OT are restricted by their one-dimensional approach, which makes it difficult to conjure an exhaustive three-dimensional picture of biological systems. The high-intensity trapping laser can damage biological samples, a fact that restricts the feasibility of in vivo applications. Finally, direct manipulation of biological matter at nanometer scale remains a significant challenge for conventional OT. A significant amount of literature has been dedicated in the last 10 years to address the aforementioned shortcomings. Innovations in laser technology and advances in various other spheres of applied physics have been capitalized upon to evolve the next generation OT systems. In this review, we elucidate a few of these developments, with particular focus on their biological applications. The manipulation of nanoscopic objects has been achieved by means of plasmonic optical tweezers (POT), which utilize localized surface plasmons to generate optical traps with enhanced trapping potential, and photonic crystal optical tweezers (PhC OT), which attain the same goal by employing different photonic crystal geometries. Femtosecond optical tweezers (fs OT), constructed by replacing the continuous wave (cw) laser source with a femtosecond laser, promise to greatly reduce the damage to living samples. Finally, one way to transcend the one-dimensional nature of the data gained by OT is to couple them to the other large family of single molecule tools, i.e., fluorescence-based imaging techniques. We discuss the distinct advantages of the aforementioned techniques as well as the alternative experimental perspective they provide in comparison to conventional OT. |
first_indexed | 2024-12-20T07:48:17Z |
format | Article |
id | doaj.art-e1a44ef95d9845d8878b6d58d3c55b66 |
institution | Directory Open Access Journal |
issn | 2218-273X |
language | English |
last_indexed | 2024-12-20T07:48:17Z |
publishDate | 2019-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Biomolecules |
spelling | doaj.art-e1a44ef95d9845d8878b6d58d3c55b662022-12-21T19:47:56ZengMDPI AGBiomolecules2218-273X2019-01-01912310.3390/biom9010023biom9010023Bio-Molecular Applications of Recent Developments in Optical TweezersDhawal Choudhary0Alessandro Mossa1Milind Jadhav2Ciro Cecconi3Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, ItalyIstituto Statale di Istruzione Superiore “Leonardo da Vinci”, Via del Terzolle 91, 50127 Firenze, ItalyDepartment of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, ItalyDepartment of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, ItalyIn the past three decades, the ability to optically manipulate biomolecules has spurred a new era of medical and biophysical research. Optical tweezers (OT) have enabled experimenters to trap, sort, and probe cells, as well as discern the structural dynamics of proteins and nucleic acids at single molecule level. The steady improvement in OT’s resolving power has progressively pushed the envelope of their applications; there are, however, some inherent limitations that are prompting researchers to look for alternatives to the conventional techniques. To begin with, OT are restricted by their one-dimensional approach, which makes it difficult to conjure an exhaustive three-dimensional picture of biological systems. The high-intensity trapping laser can damage biological samples, a fact that restricts the feasibility of in vivo applications. Finally, direct manipulation of biological matter at nanometer scale remains a significant challenge for conventional OT. A significant amount of literature has been dedicated in the last 10 years to address the aforementioned shortcomings. Innovations in laser technology and advances in various other spheres of applied physics have been capitalized upon to evolve the next generation OT systems. In this review, we elucidate a few of these developments, with particular focus on their biological applications. The manipulation of nanoscopic objects has been achieved by means of plasmonic optical tweezers (POT), which utilize localized surface plasmons to generate optical traps with enhanced trapping potential, and photonic crystal optical tweezers (PhC OT), which attain the same goal by employing different photonic crystal geometries. Femtosecond optical tweezers (fs OT), constructed by replacing the continuous wave (cw) laser source with a femtosecond laser, promise to greatly reduce the damage to living samples. Finally, one way to transcend the one-dimensional nature of the data gained by OT is to couple them to the other large family of single molecule tools, i.e., fluorescence-based imaging techniques. We discuss the distinct advantages of the aforementioned techniques as well as the alternative experimental perspective they provide in comparison to conventional OT.http://www.mdpi.com/2218-273X/9/1/23plasmonic optical tweezersfemtosecond optical tweezersphotonic crystal optical tweezersfluorescencesingle molecule and cell studies |
spellingShingle | Dhawal Choudhary Alessandro Mossa Milind Jadhav Ciro Cecconi Bio-Molecular Applications of Recent Developments in Optical Tweezers Biomolecules plasmonic optical tweezers femtosecond optical tweezers photonic crystal optical tweezers fluorescence single molecule and cell studies |
title | Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title_full | Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title_fullStr | Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title_full_unstemmed | Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title_short | Bio-Molecular Applications of Recent Developments in Optical Tweezers |
title_sort | bio molecular applications of recent developments in optical tweezers |
topic | plasmonic optical tweezers femtosecond optical tweezers photonic crystal optical tweezers fluorescence single molecule and cell studies |
url | http://www.mdpi.com/2218-273X/9/1/23 |
work_keys_str_mv | AT dhawalchoudhary biomolecularapplicationsofrecentdevelopmentsinopticaltweezers AT alessandromossa biomolecularapplicationsofrecentdevelopmentsinopticaltweezers AT milindjadhav biomolecularapplicationsofrecentdevelopmentsinopticaltweezers AT cirocecconi biomolecularapplicationsofrecentdevelopmentsinopticaltweezers |