Global structure of one-sign solutions for a simply supported beam equation

Abstract In this paper, we consider the nonlinear eigenvalue problem u ′′′′ = λ h ( t ) f ( u ) , 0 < t < 1 , u ( 0 ) = u ( 1 ) = u ″ ( 0 ) = u ″ ( 1 ) = 0 , $$\begin{gathered} u''''= \lambda h(t)f(u),\quad 0< t< 1, \\ u(0)=u(1)=u''(0)=u''(1)=0, \\...

Full description

Bibliographic Details
Main Authors: Dongliang Yan, Ruyun Ma, Xiaoxiao Su
Format: Article
Language:English
Published: SpringerOpen 2020-04-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-020-02376-y
_version_ 1818610784863780864
author Dongliang Yan
Ruyun Ma
Xiaoxiao Su
author_facet Dongliang Yan
Ruyun Ma
Xiaoxiao Su
author_sort Dongliang Yan
collection DOAJ
description Abstract In this paper, we consider the nonlinear eigenvalue problem u ′′′′ = λ h ( t ) f ( u ) , 0 < t < 1 , u ( 0 ) = u ( 1 ) = u ″ ( 0 ) = u ″ ( 1 ) = 0 , $$\begin{gathered} u''''= \lambda h(t)f(u),\quad 0< t< 1, \\ u(0)=u(1)=u''(0)=u''(1)=0, \\ \end{gathered} $$ where h ∈ C ( [ 0 , 1 ] , ( 0 , ∞ ) ) $h\in C([0,1], (0,\infty))$ ; f ∈ C ( R , R ) $f\in C(\mathbb{R},\mathbb{R})$ and s f ( s ) > 0 $sf(s)>0$ for s ≠ 0 $s\neq0$ , and f 0 = f ∞ = 0 $f_{0}=f_{\infty}=0$ , f 0 = lim | s | → 0 f ( s ) / s $f_{0}=\lim_{|s|\rightarrow0}f(s)/s$ , f ∞ = lim | s | → ∞ f ( s ) / s $f_{\infty}=\lim_{|s|\rightarrow\infty}f(s)/s$ . We investigate the global structure of one-sign solutions by using bifurcation techniques.
first_indexed 2024-12-16T15:19:57Z
format Article
id doaj.art-e1b4bddca2444de0ab6e0f50f3fd318c
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-16T15:19:57Z
publishDate 2020-04-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-e1b4bddca2444de0ab6e0f50f3fd318c2022-12-21T22:26:40ZengSpringerOpenJournal of Inequalities and Applications1029-242X2020-04-012020111110.1186/s13660-020-02376-yGlobal structure of one-sign solutions for a simply supported beam equationDongliang Yan0Ruyun Ma1Xiaoxiao Su2Department of Mathematics, Northwest Normal UniversityDepartment of Mathematics, Northwest Normal UniversityDepartment of Mathematics, Northwest Normal UniversityAbstract In this paper, we consider the nonlinear eigenvalue problem u ′′′′ = λ h ( t ) f ( u ) , 0 < t < 1 , u ( 0 ) = u ( 1 ) = u ″ ( 0 ) = u ″ ( 1 ) = 0 , $$\begin{gathered} u''''= \lambda h(t)f(u),\quad 0< t< 1, \\ u(0)=u(1)=u''(0)=u''(1)=0, \\ \end{gathered} $$ where h ∈ C ( [ 0 , 1 ] , ( 0 , ∞ ) ) $h\in C([0,1], (0,\infty))$ ; f ∈ C ( R , R ) $f\in C(\mathbb{R},\mathbb{R})$ and s f ( s ) > 0 $sf(s)>0$ for s ≠ 0 $s\neq0$ , and f 0 = f ∞ = 0 $f_{0}=f_{\infty}=0$ , f 0 = lim | s | → 0 f ( s ) / s $f_{0}=\lim_{|s|\rightarrow0}f(s)/s$ , f ∞ = lim | s | → ∞ f ( s ) / s $f_{\infty}=\lim_{|s|\rightarrow\infty}f(s)/s$ . We investigate the global structure of one-sign solutions by using bifurcation techniques.http://link.springer.com/article/10.1186/s13660-020-02376-yConnected componentGreen functionOne-sign solutionsBifurcationSimply supported beam
spellingShingle Dongliang Yan
Ruyun Ma
Xiaoxiao Su
Global structure of one-sign solutions for a simply supported beam equation
Journal of Inequalities and Applications
Connected component
Green function
One-sign solutions
Bifurcation
Simply supported beam
title Global structure of one-sign solutions for a simply supported beam equation
title_full Global structure of one-sign solutions for a simply supported beam equation
title_fullStr Global structure of one-sign solutions for a simply supported beam equation
title_full_unstemmed Global structure of one-sign solutions for a simply supported beam equation
title_short Global structure of one-sign solutions for a simply supported beam equation
title_sort global structure of one sign solutions for a simply supported beam equation
topic Connected component
Green function
One-sign solutions
Bifurcation
Simply supported beam
url http://link.springer.com/article/10.1186/s13660-020-02376-y
work_keys_str_mv AT dongliangyan globalstructureofonesignsolutionsforasimplysupportedbeamequation
AT ruyunma globalstructureofonesignsolutionsforasimplysupportedbeamequation
AT xiaoxiaosu globalstructureofonesignsolutionsforasimplysupportedbeamequation