Quaternionic Shape Operator and Rotation Matrix on Ruled Surfaces

In this article, we examine the relationship between Darboux frames along parameter curves and the Darboux frame of the base curve of the ruled surface. We derive the equations of the quaternionic shape operators, which can rotate tangent vectors around the normal vector, and find the corresponding...

Full description

Bibliographic Details
Main Authors: Yanlin Li, Abdussamet Çalışkan
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/5/486
Description
Summary:In this article, we examine the relationship between Darboux frames along parameter curves and the Darboux frame of the base curve of the ruled surface. We derive the equations of the quaternionic shape operators, which can rotate tangent vectors around the normal vector, and find the corresponding rotation matrices. Using these operators, we examine the Gauss curvature and mean curvature of the ruled surface. We explore how these properties are found by the use of Frenet vectors instead of generator vectors. We provide illustrative examples to better demonstrate the concepts and results discussed.
ISSN:2075-1680