دراسة مقارنة لخوارزميات الأنماط المحلية في أنظمة استرجاع الصور المعتمدة على المحتوى

إن الحاجة المتزايدة لاسترجاع الصور من قواعد البيانات الضخمة جعلت مجال استرجاع الصور بالاعتماد على المحتوى Content-Based Image Retrieval (CBIR) مجالاً ملحاً وضرورياً للبحث. اقترح الباحثون الكثير من خوارزميات استرجاع الصور من خلال استخراج السمات الهامة والمميزة من المحتوى المرئي للصورة لأهمية السمات...

Full description

Bibliographic Details
Main Authors: Mariam Saii, Jaber Hanna, Darin Mhalla
Format: Article
Language:Arabic
Published: Tishreen University 2022-03-01
Series:مجلة جامعة تشرين للبحوث والدراسات العلمية- سلسلة العلوم الهندسية
Subjects:
Online Access:https://journal.tishreen.edu.sy/index.php/engscnc/article/view/11825
Description
Summary:إن الحاجة المتزايدة لاسترجاع الصور من قواعد البيانات الضخمة جعلت مجال استرجاع الصور بالاعتماد على المحتوى Content-Based Image Retrieval (CBIR) مجالاً ملحاً وضرورياً للبحث. اقترح الباحثون الكثير من خوارزميات استرجاع الصور من خلال استخراج السمات الهامة والمميزة من المحتوى المرئي للصورة لأهمية السمات المستخرجة في تحسين دقة أنظمة الاسترجاع. وفي هذا البحث، تم إجراء مقارنة لست خوارزميات محلية مشهورة على مدى عقد من الزمن (LBP, LTP, LTrP, MMCM, COALTP and LMP)  واختبار هذه الخوارزميات باستخدام نوعين مختلفين من قواعد البيانات: قواعد بيانات الصور الملونة(Color image database) و قواعد بيانات النسجة(Texture database) وباستخدام أربعة مقاييس للمسافات(L1, Euclidean, Cityblock and Cosine)  لاسترجاع الصور الأكثر مطابقة لصورة الاستعلام من خلال اختيار الصور ذات المسافة الأقصر. تم تقييم أداء الخوارزميات المدروسة باستخدام ثلاثة مقاييس: متوسط ​​دقة الاسترجاع (Average Retrieval Precision) ARP، متوسط الاسترداد Average Recall  ومتوسط ​​معدل الاسترجاع (Average Retrieval Rate) ARR، كشفت هذه الدراسة تفوق خوارزمية COALTP على الخوارزميات الأخرى المختبرة، وبالإضافة إلى ذلك، أظهرت النتائج أن خوارزميات الأنماط المحلية أكثر كفاءة في استرجاع الصور من قواعد بيانات النسجة مقارنة مع قواعد البيانات الملونة.
ISSN:2079-3081
2663-4279