On bimodal size distribution of spin clusters in the onedimensional Ising model

The size distribution of geometrical spin clusters is exactly found for the onedimensional Ising model of finite extent. For the values of lattice constant β above some “critical value” βc the found size distribution demonstrates the non-monotonic behaviour with the peak corresponding to the size of...

Full description

Bibliographic Details
Main Authors: Ivanytskyi A., Chelnokov V.
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201818203004
Description
Summary:The size distribution of geometrical spin clusters is exactly found for the onedimensional Ising model of finite extent. For the values of lattice constant β above some “critical value” βc the found size distribution demonstrates the non-monotonic behaviour with the peak corresponding to the size of the largest available cluster. In other words, for high values of the lattice constant there are two ways to fill the lattice: either to form a single largest cluster or to create many clusters of small sizes. This feature closely resembles the well-know bimodal size distribution of clusters which is usually interpreted as a robust signal of the first order liquid-gas phase transition in finite systems. It is remarkable that the bimodal size distribution of spin clusters appears in the one-dimensional Ising model of finite size, i.e. in the model which in thermodynamic limit has no phase transition at all.
ISSN:2100-014X