Least energy sign-changing solutions for Kirchhoff-Schrödinger-Poisson system on bounded domains

We investigate the following nonlinear system $ \begin{cases} -(a+ b\int _{\Omega}|\nabla u|^{2}dx)\Delta u+\phi u = \lambda u+\mu|u|^{2}u, \; \ x\in\Omega, \\ -\Delta\phi = u^{2}, \; \ x\in\Omega, \\ u = \phi = 0, \; \ x\in \partial\Omega, \end{cases} $ with $ a, b > 0 $, $ \lambd...

Full description

Bibliographic Details
Main Authors: Xia Su, Wen Guan, Xia Li
Format: Article
Language:English
Published: AIMS Press 2023-03-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2023149?viewType=HTML
_version_ 1797831783448838144
author Xia Su
Wen Guan
Xia Li
author_facet Xia Su
Wen Guan
Xia Li
author_sort Xia Su
collection DOAJ
description We investigate the following nonlinear system $ \begin{cases} -(a+ b\int _{\Omega}|\nabla u|^{2}dx)\Delta u+\phi u = \lambda u+\mu|u|^{2}u, \; \ x\in\Omega, \\ -\Delta\phi = u^{2}, \; \ x\in\Omega, \\ u = \phi = 0, \; \ x\in \partial\Omega, \end{cases} $ with $ a, b > 0 $, $ \lambda, \mu\in\mathbb{R} $, and $ \Omega\subset \mathbb{R}^{3} $ is bounded with smooth boundary. Let $ \lambda_{1} > 0 $ be the first eigenvalue of $ (-\Delta u, H^{1}_{0}(\Omega)) $. We get that for certain $ \widetilde{\mu} > 0 $ there exists at least one least energy sign-changing solution for the above system if $ \lambda < a\lambda_{1} $ and $ \mu > \widetilde{\mu} $. In addition, we remark that the nonlinearity $ \lambda u+\mu|u|^{2}u $ does not satisfy the growth conditions.
first_indexed 2024-04-09T13:57:14Z
format Article
id doaj.art-e1ed3405280e40b8b59387a5b9337cc2
institution Directory Open Access Journal
issn 2688-1594
language English
last_indexed 2024-04-09T13:57:14Z
publishDate 2023-03-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj.art-e1ed3405280e40b8b59387a5b9337cc22023-05-08T01:37:15ZengAIMS PressElectronic Research Archive2688-15942023-03-013152959297310.3934/era.2023149Least energy sign-changing solutions for Kirchhoff-Schrödinger-Poisson system on bounded domainsXia Su0Wen Guan1Xia Li21. Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an 223003, Jiangsu, China2. Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou 730050, Gansu, China2. Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou 730050, Gansu, ChinaWe investigate the following nonlinear system $ \begin{cases} -(a+ b\int _{\Omega}|\nabla u|^{2}dx)\Delta u+\phi u = \lambda u+\mu|u|^{2}u, \; \ x\in\Omega, \\ -\Delta\phi = u^{2}, \; \ x\in\Omega, \\ u = \phi = 0, \; \ x\in \partial\Omega, \end{cases} $ with $ a, b > 0 $, $ \lambda, \mu\in\mathbb{R} $, and $ \Omega\subset \mathbb{R}^{3} $ is bounded with smooth boundary. Let $ \lambda_{1} > 0 $ be the first eigenvalue of $ (-\Delta u, H^{1}_{0}(\Omega)) $. We get that for certain $ \widetilde{\mu} > 0 $ there exists at least one least energy sign-changing solution for the above system if $ \lambda < a\lambda_{1} $ and $ \mu > \widetilde{\mu} $. In addition, we remark that the nonlinearity $ \lambda u+\mu|u|^{2}u $ does not satisfy the growth conditions.https://www.aimspress.com/article/doi/10.3934/era.2023149?viewType=HTMLkirchhoff type equationschrödinger-poisson problemsign-changing solutionsnehari manifoldthe growth conditions
spellingShingle Xia Su
Wen Guan
Xia Li
Least energy sign-changing solutions for Kirchhoff-Schrödinger-Poisson system on bounded domains
Electronic Research Archive
kirchhoff type equation
schrödinger-poisson problem
sign-changing solutions
nehari manifold
the growth conditions
title Least energy sign-changing solutions for Kirchhoff-Schrödinger-Poisson system on bounded domains
title_full Least energy sign-changing solutions for Kirchhoff-Schrödinger-Poisson system on bounded domains
title_fullStr Least energy sign-changing solutions for Kirchhoff-Schrödinger-Poisson system on bounded domains
title_full_unstemmed Least energy sign-changing solutions for Kirchhoff-Schrödinger-Poisson system on bounded domains
title_short Least energy sign-changing solutions for Kirchhoff-Schrödinger-Poisson system on bounded domains
title_sort least energy sign changing solutions for kirchhoff schrodinger poisson system on bounded domains
topic kirchhoff type equation
schrödinger-poisson problem
sign-changing solutions
nehari manifold
the growth conditions
url https://www.aimspress.com/article/doi/10.3934/era.2023149?viewType=HTML
work_keys_str_mv AT xiasu leastenergysignchangingsolutionsforkirchhoffschrodingerpoissonsystemonboundeddomains
AT wenguan leastenergysignchangingsolutionsforkirchhoffschrodingerpoissonsystemonboundeddomains
AT xiali leastenergysignchangingsolutionsforkirchhoffschrodingerpoissonsystemonboundeddomains