The Real Forms of the Fractional Supergroup SL(2,C)

The real forms of complex groups (or algebras) are important in physics and mathematics. The Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>L</mi><mfence...

Full description

Bibliographic Details
Main Authors: Yasemen Ucan, Resat Kosker
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/9/933
_version_ 1827694449840357376
author Yasemen Ucan
Resat Kosker
author_facet Yasemen Ucan
Resat Kosker
author_sort Yasemen Ucan
collection DOAJ
description The real forms of complex groups (or algebras) are important in physics and mathematics. The Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></semantics></math></inline-formula> is one of these important groups. There are real forms of the classical Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></semantics></math></inline-formula> and the quantum group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></semantics></math></inline-formula> in the literature. Inspired by this, in our study, we obtain the real forms of the fractional supergroups shown with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mn>3</mn><mi>N</mi></msubsup><mfenced><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></mfenced></mrow></semantics></math></inline-formula>, for the non-trivial N = 1 and N = 2 cases, that is, the real forms of the fractional supergroups <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mn>3</mn><mn>1</mn></msubsup><mfenced><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></mfenced></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mn>3</mn><mn>2</mn></msubsup><mfenced><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></mfenced></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T12:05:10Z
format Article
id doaj.art-e1fdebb4229c445ba49fc882785ce2e4
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T12:05:10Z
publishDate 2021-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-e1fdebb4229c445ba49fc882785ce2e42023-11-21T16:41:32ZengMDPI AGMathematics2227-73902021-04-019993310.3390/math9090933The Real Forms of the Fractional Supergroup SL(2,C)Yasemen Ucan0Resat Kosker1Department of Mathematical Engineering, Faculty of Chemistry and Metallurgy, Davutpasa Campus, Yildiz Technical University, Esenler, 34220 Istanbul, TurkeyDepartment of Mathematical Engineering, Faculty of Chemistry and Metallurgy, Davutpasa Campus, Yildiz Technical University, Esenler, 34220 Istanbul, TurkeyThe real forms of complex groups (or algebras) are important in physics and mathematics. The Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></semantics></math></inline-formula> is one of these important groups. There are real forms of the classical Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></semantics></math></inline-formula> and the quantum group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></semantics></math></inline-formula> in the literature. Inspired by this, in our study, we obtain the real forms of the fractional supergroups shown with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mn>3</mn><mi>N</mi></msubsup><mfenced><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></mfenced></mrow></semantics></math></inline-formula>, for the non-trivial N = 1 and N = 2 cases, that is, the real forms of the fractional supergroups <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mn>3</mn><mn>1</mn></msubsup><mfenced><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></mfenced></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>A</mi><mn>3</mn><mn>2</mn></msubsup><mfenced><mrow><mi>S</mi><mi>L</mi><mfenced><mrow><mn>2</mn><mo>,</mo><mi>C</mi></mrow></mfenced></mrow></mfenced></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/9/9/933fractional supergroupHopf algebrastar-algebra
spellingShingle Yasemen Ucan
Resat Kosker
The Real Forms of the Fractional Supergroup SL(2,C)
Mathematics
fractional supergroup
Hopf algebra
star-algebra
title The Real Forms of the Fractional Supergroup SL(2,C)
title_full The Real Forms of the Fractional Supergroup SL(2,C)
title_fullStr The Real Forms of the Fractional Supergroup SL(2,C)
title_full_unstemmed The Real Forms of the Fractional Supergroup SL(2,C)
title_short The Real Forms of the Fractional Supergroup SL(2,C)
title_sort real forms of the fractional supergroup sl 2 c
topic fractional supergroup
Hopf algebra
star-algebra
url https://www.mdpi.com/2227-7390/9/9/933
work_keys_str_mv AT yasemenucan therealformsofthefractionalsupergroupsl2c
AT resatkosker therealformsofthefractionalsupergroupsl2c
AT yasemenucan realformsofthefractionalsupergroupsl2c
AT resatkosker realformsofthefractionalsupergroupsl2c