Flutter speed estimation using presented differential quadrature method formulation
In this paper the flutter behavior of a typical wing is investigated. The study is performed by presented Deferential Quadrature Method (DQM). The aerodynamic part adopted Wagner functions to model subsonic regime. Quasi steady and unsteady aerodynamics are considered to estimate the instability spe...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2019-01-01
|
Series: | Engineering Applications of Computational Fluid Mechanics |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/19942060.2019.1627676 |
Summary: | In this paper the flutter behavior of a typical wing is investigated. The study is performed by presented Deferential Quadrature Method (DQM). The aerodynamic part adopted Wagner functions to model subsonic regime. Quasi steady and unsteady aerodynamics are considered to estimate the instability speed of the structure. Based on the presented model, a code is developed, for an arbitrary typical section beam. The obtained results validated the existing methods in the literature. The proposed method provides the advantage of finding the modes of oscillation and other dynamic parameters with less than 0.2% difference. |
---|---|
ISSN: | 1994-2060 1997-003X |