Investigation of the performance of grouted couplers in vehicle impacted reinforced concrete ABC bridge piers
Abstract Increased dynamic impact on bridge piers caused by seismic events, blasts, and vehicular impact have become increasingly common. Recent research efforts indicate that code provisions for designing reinforced concrete members to withstand such dynamic loads are inadequate and need additional...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2022-11-01
|
Series: | Advances in Bridge Engineering |
Subjects: | |
Online Access: | https://doi.org/10.1186/s43251-022-00065-y |
_version_ | 1811223551174246400 |
---|---|
author | Suman Roy Ikwulono D. Unobe Andrew D. Sorensen |
author_facet | Suman Roy Ikwulono D. Unobe Andrew D. Sorensen |
author_sort | Suman Roy |
collection | DOAJ |
description | Abstract Increased dynamic impact on bridge piers caused by seismic events, blasts, and vehicular impact have become increasingly common. Recent research efforts indicate that code provisions for designing reinforced concrete members to withstand such dynamic loads are inadequate and need additional insights for this purpose. Numerous works have been undertaken to investigate reinforced concrete (RC) traditional bridge pier performance on high strain rate loading. However, little attention has been given to evaluate the performance of connections used in present day bridges including accelerated bridge constructions (ABC) to withstand vehicle impacts, and hence, is relatively unknown. In this study, the use of grouted couplers to contain the unbalanced moments resulting from vehicular impact forces exceeding the moment capacity of the reinforced concrete piers and avoiding extensive damage to the piers is investigated. A representative column, typical of those specified by state departments of transportation, is studied to determine the performance. The performance of the coupler is investigated for both dynamic and static combined stresses. Quasi-static to dynamic strain rates of steel reinforcement connected to the couplers is also evaluated. Quantifying the stresses and strains developed at coupler region from dynamic impact can help coupler manufacturers to optimize the strength properties, thus improving serviceability. This study investigated utilizing splice sleeves in mitigating the formation of plastic hinges, as well as addressing the essential properties of coupler sections required to adequately carry out this function, and will provide a useful design tool for the manufacturers, forensic structural engineers, and practitioners. |
first_indexed | 2024-04-12T08:34:34Z |
format | Article |
id | doaj.art-e20782577c584c608612d0f910b70ef9 |
institution | Directory Open Access Journal |
issn | 2662-5407 |
language | English |
last_indexed | 2024-04-12T08:34:34Z |
publishDate | 2022-11-01 |
publisher | SpringerOpen |
record_format | Article |
series | Advances in Bridge Engineering |
spelling | doaj.art-e20782577c584c608612d0f910b70ef92022-12-22T03:40:03ZengSpringerOpenAdvances in Bridge Engineering2662-54072022-11-013113010.1186/s43251-022-00065-yInvestigation of the performance of grouted couplers in vehicle impacted reinforced concrete ABC bridge piersSuman Roy0Ikwulono D. Unobe1Andrew D. Sorensen2Department of Civil and Environmental Engineering, Utah State UniversityDepartment of Civil and Environmental Engineering, Utah State UniversityDepartment of Civil and Environmental Engineering, Utah State UniversityAbstract Increased dynamic impact on bridge piers caused by seismic events, blasts, and vehicular impact have become increasingly common. Recent research efforts indicate that code provisions for designing reinforced concrete members to withstand such dynamic loads are inadequate and need additional insights for this purpose. Numerous works have been undertaken to investigate reinforced concrete (RC) traditional bridge pier performance on high strain rate loading. However, little attention has been given to evaluate the performance of connections used in present day bridges including accelerated bridge constructions (ABC) to withstand vehicle impacts, and hence, is relatively unknown. In this study, the use of grouted couplers to contain the unbalanced moments resulting from vehicular impact forces exceeding the moment capacity of the reinforced concrete piers and avoiding extensive damage to the piers is investigated. A representative column, typical of those specified by state departments of transportation, is studied to determine the performance. The performance of the coupler is investigated for both dynamic and static combined stresses. Quasi-static to dynamic strain rates of steel reinforcement connected to the couplers is also evaluated. Quantifying the stresses and strains developed at coupler region from dynamic impact can help coupler manufacturers to optimize the strength properties, thus improving serviceability. This study investigated utilizing splice sleeves in mitigating the formation of plastic hinges, as well as addressing the essential properties of coupler sections required to adequately carry out this function, and will provide a useful design tool for the manufacturers, forensic structural engineers, and practitioners.https://doi.org/10.1186/s43251-022-00065-yGrouted couplerSplice sleeveBridge pierUnbalanced momentsImpactStrain |
spellingShingle | Suman Roy Ikwulono D. Unobe Andrew D. Sorensen Investigation of the performance of grouted couplers in vehicle impacted reinforced concrete ABC bridge piers Advances in Bridge Engineering Grouted coupler Splice sleeve Bridge pier Unbalanced moments Impact Strain |
title | Investigation of the performance of grouted couplers in vehicle impacted reinforced concrete ABC bridge piers |
title_full | Investigation of the performance of grouted couplers in vehicle impacted reinforced concrete ABC bridge piers |
title_fullStr | Investigation of the performance of grouted couplers in vehicle impacted reinforced concrete ABC bridge piers |
title_full_unstemmed | Investigation of the performance of grouted couplers in vehicle impacted reinforced concrete ABC bridge piers |
title_short | Investigation of the performance of grouted couplers in vehicle impacted reinforced concrete ABC bridge piers |
title_sort | investigation of the performance of grouted couplers in vehicle impacted reinforced concrete abc bridge piers |
topic | Grouted coupler Splice sleeve Bridge pier Unbalanced moments Impact Strain |
url | https://doi.org/10.1186/s43251-022-00065-y |
work_keys_str_mv | AT sumanroy investigationoftheperformanceofgroutedcouplersinvehicleimpactedreinforcedconcreteabcbridgepiers AT ikwulonodunobe investigationoftheperformanceofgroutedcouplersinvehicleimpactedreinforcedconcreteabcbridgepiers AT andrewdsorensen investigationoftheperformanceofgroutedcouplersinvehicleimpactedreinforcedconcreteabcbridgepiers |