On the edge chromatic vertex stability number of graphs

AbstractFor an arbitrary invariant [Formula: see text] of a graph G, the [Formula: see text]vertex stability number [Formula: see text] is the minimum number of vertices of G whose removal results in a graph [Formula: see text] with [Formula: see text] or with [Formula: see text] In this paper, firs...

Full description

Bibliographic Details
Main Authors: Saeid Alikhani, Mohammad R. Piri
Format: Article
Language:English
Published: Taylor & Francis Group 2023-01-01
Series:AKCE International Journal of Graphs and Combinatorics
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/09728600.2022.2149367
_version_ 1827915595594596352
author Saeid Alikhani
Mohammad R. Piri
author_facet Saeid Alikhani
Mohammad R. Piri
author_sort Saeid Alikhani
collection DOAJ
description AbstractFor an arbitrary invariant [Formula: see text] of a graph G, the [Formula: see text]vertex stability number [Formula: see text] is the minimum number of vertices of G whose removal results in a graph [Formula: see text] with [Formula: see text] or with [Formula: see text] In this paper, first we give some general lower and upper bounds for the ρ-vertex stability number, and then study the edge chromatic vertex stability number of graphs, [Formula: see text] where [Formula: see text] is edge chromatic number (chromatic index) of G. We prove some general results for this parameter and determine [Formula: see text] for specific classes of graphs.
first_indexed 2024-03-13T03:01:04Z
format Article
id doaj.art-e218dd6a5a3e4844979a8996bb47314b
institution Directory Open Access Journal
issn 0972-8600
2543-3474
language English
last_indexed 2024-03-13T03:01:04Z
publishDate 2023-01-01
publisher Taylor & Francis Group
record_format Article
series AKCE International Journal of Graphs and Combinatorics
spelling doaj.art-e218dd6a5a3e4844979a8996bb47314b2023-06-27T14:07:21ZengTaylor & Francis GroupAKCE International Journal of Graphs and Combinatorics0972-86002543-34742023-01-01201293410.1080/09728600.2022.2149367On the edge chromatic vertex stability number of graphsSaeid Alikhani0Mohammad R. Piri1Department of Mathematical Sciences, Yazd University, Yazd, IranDepartment of Mathematical Sciences, Yazd University, Yazd, IranAbstractFor an arbitrary invariant [Formula: see text] of a graph G, the [Formula: see text]vertex stability number [Formula: see text] is the minimum number of vertices of G whose removal results in a graph [Formula: see text] with [Formula: see text] or with [Formula: see text] In this paper, first we give some general lower and upper bounds for the ρ-vertex stability number, and then study the edge chromatic vertex stability number of graphs, [Formula: see text] where [Formula: see text] is edge chromatic number (chromatic index) of G. We prove some general results for this parameter and determine [Formula: see text] for specific classes of graphs.https://www.tandfonline.com/doi/10.1080/09728600.2022.2149367Edge chromatic vertex stability numberchromatic indexcoronajoin05C1505C25
spellingShingle Saeid Alikhani
Mohammad R. Piri
On the edge chromatic vertex stability number of graphs
AKCE International Journal of Graphs and Combinatorics
Edge chromatic vertex stability number
chromatic index
corona
join
05C15
05C25
title On the edge chromatic vertex stability number of graphs
title_full On the edge chromatic vertex stability number of graphs
title_fullStr On the edge chromatic vertex stability number of graphs
title_full_unstemmed On the edge chromatic vertex stability number of graphs
title_short On the edge chromatic vertex stability number of graphs
title_sort on the edge chromatic vertex stability number of graphs
topic Edge chromatic vertex stability number
chromatic index
corona
join
05C15
05C25
url https://www.tandfonline.com/doi/10.1080/09728600.2022.2149367
work_keys_str_mv AT saeidalikhani ontheedgechromaticvertexstabilitynumberofgraphs
AT mohammadrpiri ontheedgechromaticvertexstabilitynumberofgraphs