On Convergence Rates of Some Limits
In 2019 Seneta has provided a characterization of slowly varying functions <i>L</i> in the Zygmund sense by using the condition, for each <inline-formula> <math display="inline"> <semantics> <mrow> <mi>y</mi> <mo>></mo> <mn&...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/4/634 |
_version_ | 1827718261960081408 |
---|---|
author | Edward Omey Meitner Cadena |
author_facet | Edward Omey Meitner Cadena |
author_sort | Edward Omey |
collection | DOAJ |
description | In 2019 Seneta has provided a characterization of slowly varying functions <i>L</i> in the Zygmund sense by using the condition, for each <inline-formula> <math display="inline"> <semantics> <mrow> <mi>y</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mfenced separators="" open="(" close=")"> <mfrac> <mrow> <mi>L</mi> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>)</mo> </mrow> <mrow> <mi>L</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mfrac> <mo>−</mo> <mn>1</mn> </mfenced> <mo>→</mo> <mn>0</mn> <mspace width="1.em"></mspace> <mi>as</mi> <mspace width="1.em"></mspace> <mi>x</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics> </math> </inline-formula>. Very recently, we have extended this result by considering a wider class of functions <i>U</i> related to the following more general condition. For each <inline-formula> <math display="inline"> <semantics> <mrow> <mi>y</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mfenced separators="" open="(" close=")"> <mfrac> <mrow> <mi>U</mi> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mi>g</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mi>U</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mfrac> <mo>−</mo> <mn>1</mn> </mfenced> <mo>→</mo> <mn>0</mn> <mspace width="1.em"></mspace> <mi>as</mi> <mspace width="1.em"></mspace> <mi>x</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics> </math> </inline-formula>, for some functions <i>r</i> and <i>g</i>. In this paper, we examine this last result by considering a much more general convergence condition. A wider class related to this new condition is presented. Further, a representation theorem for this wider class is provided. |
first_indexed | 2024-03-10T20:20:45Z |
format | Article |
id | doaj.art-e2268309144246b38ae270e38f89ec7a |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T20:20:45Z |
publishDate | 2020-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-e2268309144246b38ae270e38f89ec7a2023-11-19T22:14:45ZengMDPI AGMathematics2227-73902020-04-018463410.3390/math8040634On Convergence Rates of Some LimitsEdward Omey0Meitner Cadena1Research Centre for Mathematics, Education, Econometrics and Statistics (MEES), Catholic University Leuven at Campus Brussels, Warmoesberg 26, 1000 Brussels, BelgiumDepartamento de Ciencias Exactas, Universidad de las Fuerzas Armadas, Sangolqui 171103, EcuadorIn 2019 Seneta has provided a characterization of slowly varying functions <i>L</i> in the Zygmund sense by using the condition, for each <inline-formula> <math display="inline"> <semantics> <mrow> <mi>y</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>x</mi> <mfenced separators="" open="(" close=")"> <mfrac> <mrow> <mi>L</mi> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mo>)</mo> </mrow> <mrow> <mi>L</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mfrac> <mo>−</mo> <mn>1</mn> </mfenced> <mo>→</mo> <mn>0</mn> <mspace width="1.em"></mspace> <mi>as</mi> <mspace width="1.em"></mspace> <mi>x</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics> </math> </inline-formula>. Very recently, we have extended this result by considering a wider class of functions <i>U</i> related to the following more general condition. For each <inline-formula> <math display="inline"> <semantics> <mrow> <mi>y</mi> <mo>></mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mfenced separators="" open="(" close=")"> <mfrac> <mrow> <mi>U</mi> <mo>(</mo> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mi>g</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mi>U</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mfrac> <mo>−</mo> <mn>1</mn> </mfenced> <mo>→</mo> <mn>0</mn> <mspace width="1.em"></mspace> <mi>as</mi> <mspace width="1.em"></mspace> <mi>x</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics> </math> </inline-formula>, for some functions <i>r</i> and <i>g</i>. In this paper, we examine this last result by considering a much more general convergence condition. A wider class related to this new condition is presented. Further, a representation theorem for this wider class is provided.https://www.mdpi.com/2227-7390/8/4/634slowly varyingmonotony in the Zygmund senseclass Γ<sub><i>a</i></sub>(<i>g</i>)self-neglecting functionconvergence rates |
spellingShingle | Edward Omey Meitner Cadena On Convergence Rates of Some Limits Mathematics slowly varying monotony in the Zygmund sense class Γ<sub><i>a</i></sub>(<i>g</i>) self-neglecting function convergence rates |
title | On Convergence Rates of Some Limits |
title_full | On Convergence Rates of Some Limits |
title_fullStr | On Convergence Rates of Some Limits |
title_full_unstemmed | On Convergence Rates of Some Limits |
title_short | On Convergence Rates of Some Limits |
title_sort | on convergence rates of some limits |
topic | slowly varying monotony in the Zygmund sense class Γ<sub><i>a</i></sub>(<i>g</i>) self-neglecting function convergence rates |
url | https://www.mdpi.com/2227-7390/8/4/634 |
work_keys_str_mv | AT edwardomey onconvergenceratesofsomelimits AT meitnercadena onconvergenceratesofsomelimits |