An iterative framework for EEG-based image search: robust retrieval with weak classifiers.
We revisit the framework for brain-coupled image search, where the Electroencephalography (EEG) channel under rapid serial visual presentation protocol is used to detect user preferences. Extending previous works on the synergy between content-based image labeling and EEG-based brain-computer interf...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2013-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3748021?pdf=render |
_version_ | 1828877848852561920 |
---|---|
author | Marija Ušćumlić Ricardo Chavarriaga José Del R Millán |
author_facet | Marija Ušćumlić Ricardo Chavarriaga José Del R Millán |
author_sort | Marija Ušćumlić |
collection | DOAJ |
description | We revisit the framework for brain-coupled image search, where the Electroencephalography (EEG) channel under rapid serial visual presentation protocol is used to detect user preferences. Extending previous works on the synergy between content-based image labeling and EEG-based brain-computer interface (BCI), we propose a different perspective on iterative coupling. Previously, the iterations were used to improve the set of EEG-based image labels before propagating them to the unseen images for the final retrieval. In our approach we accumulate the evidence of the true labels for each image in the database through iterations. This is done by propagating the EEG-based labels of the presented images at each iteration to the rest of images in the database. Our results demonstrate a continuous improvement of the labeling performance across iterations despite the moderate EEG-based labeling (AUC <75%). The overall analysis is done in terms of the single-trial EEG decoding performance and the image database reorganization quality. Furthermore, we discuss the EEG-based labeling performance with respect to a search task given the same image database. |
first_indexed | 2024-12-13T08:51:01Z |
format | Article |
id | doaj.art-e22b6dfa51ea48e6bbde321a26c784ad |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-13T08:51:01Z |
publishDate | 2013-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-e22b6dfa51ea48e6bbde321a26c784ad2022-12-21T23:53:21ZengPublic Library of Science (PLoS)PLoS ONE1932-62032013-01-0188e7201810.1371/journal.pone.0072018An iterative framework for EEG-based image search: robust retrieval with weak classifiers.Marija UšćumlićRicardo ChavarriagaJosé Del R MillánWe revisit the framework for brain-coupled image search, where the Electroencephalography (EEG) channel under rapid serial visual presentation protocol is used to detect user preferences. Extending previous works on the synergy between content-based image labeling and EEG-based brain-computer interface (BCI), we propose a different perspective on iterative coupling. Previously, the iterations were used to improve the set of EEG-based image labels before propagating them to the unseen images for the final retrieval. In our approach we accumulate the evidence of the true labels for each image in the database through iterations. This is done by propagating the EEG-based labels of the presented images at each iteration to the rest of images in the database. Our results demonstrate a continuous improvement of the labeling performance across iterations despite the moderate EEG-based labeling (AUC <75%). The overall analysis is done in terms of the single-trial EEG decoding performance and the image database reorganization quality. Furthermore, we discuss the EEG-based labeling performance with respect to a search task given the same image database.http://europepmc.org/articles/PMC3748021?pdf=render |
spellingShingle | Marija Ušćumlić Ricardo Chavarriaga José Del R Millán An iterative framework for EEG-based image search: robust retrieval with weak classifiers. PLoS ONE |
title | An iterative framework for EEG-based image search: robust retrieval with weak classifiers. |
title_full | An iterative framework for EEG-based image search: robust retrieval with weak classifiers. |
title_fullStr | An iterative framework for EEG-based image search: robust retrieval with weak classifiers. |
title_full_unstemmed | An iterative framework for EEG-based image search: robust retrieval with weak classifiers. |
title_short | An iterative framework for EEG-based image search: robust retrieval with weak classifiers. |
title_sort | iterative framework for eeg based image search robust retrieval with weak classifiers |
url | http://europepmc.org/articles/PMC3748021?pdf=render |
work_keys_str_mv | AT marijauscumlic aniterativeframeworkforeegbasedimagesearchrobustretrievalwithweakclassifiers AT ricardochavarriaga aniterativeframeworkforeegbasedimagesearchrobustretrievalwithweakclassifiers AT josedelrmillan aniterativeframeworkforeegbasedimagesearchrobustretrievalwithweakclassifiers AT marijauscumlic iterativeframeworkforeegbasedimagesearchrobustretrievalwithweakclassifiers AT ricardochavarriaga iterativeframeworkforeegbasedimagesearchrobustretrievalwithweakclassifiers AT josedelrmillan iterativeframeworkforeegbasedimagesearchrobustretrievalwithweakclassifiers |