CBIR-SAR System Using Stochastic Distance

This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness (<inline-formula><math xmlns="http://www...

Full description

Bibliographic Details
Main Authors: Alcilene Dalília Sousa, Pedro Henrique dos Santos Silva, Romuere Rodrigues Veloso Silva, Francisco Alixandre Àvila Rodrigues, Fatima Nelsizeuma Sombra Medeiros
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/23/13/6080
Description
Summary:This article proposes a system for Content-Based Image Retrieval (CBIR) using stochastic distance for Synthetic-Aperture Radar (SAR) images. The methodology consists of three essential steps for image retrieval. First, it estimates the roughness (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>α</mi><mo>^</mo></mover></semantics></math></inline-formula>) and scale (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>γ</mi><mo>^</mo></mover></semantics></math></inline-formula>) parameters of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>G</mi><mrow><mi>I</mi></mrow><mn>0</mn></msubsup></semantics></math></inline-formula> distribution that models SAR data in intensity. The parameters of the model were estimated using the Maximum Likelihood Estimation and the fast approach of the Log-Cumulants method. Second, using the triangular distance, CBIR-SAR evaluates the similarity between a query image and images in the database. The stochastic distance can identify the most similar regions according to the image features, which are the estimated parameters of the data model. Third, the performance of our proposal was evaluated by applying the Mean Average Precision (MAP) measure and considering clippings from three radar sensors, i.e., UAVSAR, OrbiSaR-2, and ALOS PALSAR. The CBIR-SAR results for synthetic images achieved the highest MAP value, retrieving extremely heterogeneous regions. Regarding the real SAR images, CBIR-SAR achieved MAP values above 0.833 for all polarization channels for image samples of forest (UAVSAR) and urban areas (ORBISAR). Our results confirmed that the proposed method is sensitive to the degree of texture, and hence, it relies on good estimates. They are inputs to the stochastic distance for effective image retrieval.
ISSN:1424-8220