A High-Performance Flexible Hydroacoustic Transducer Based on 1-3 PZT-5A/Silicone Rubber Composite

In recent years, hydroacoustic transducers made of PZT/epoxy composites have been extensively employed in underwater detection, communication, and recognition for their high energy conversion efficiency. Despite the ease with which these transducers can be formed into complex shapes, their lack of m...

Full description

Bibliographic Details
Main Authors: Shaohua Hao, Chao Zhong, Likun Wang, Lei Qin
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/7/2081
Description
Summary:In recent years, hydroacoustic transducers made of PZT/epoxy composites have been extensively employed in underwater detection, communication, and recognition for their high energy conversion efficiency. Despite the ease with which these transducers can be formed into complex shapes, their lack of mechanical flexibility limits their versatility across various sizes of underwater vehicles. This study introduces a novel flexible piezoelectric composite hydroacoustic transducer (FPCHT) based on a 1-3 PZT-5A/silicone rubber composite and an island–bridge flexible electrode, which can break the limitations of existing hydroacoustic transducers that do not have flexibility. The finite element method is used to optimize the structural parameters of high-performance 1-3 FPC. A large-sized (187 mm × 47 mm × 5.12 mm) FPC is fabricated using an improved cutting–filling method and packaged into the FPCHT. Compared with the planar rigid PZT/epoxy composite hydroacoustic transducer (RPCHT) of the same size, the TVR (186.5 db) of the FPCHT has increased by about 7 dB, indicating that it has better acoustic radiation performance and electroacoustic conversion efficiency. Furthermore, its electroacoustic performance exhibits excellent stability under different bending states. Therefore, the FPCHT with high electroacoustic performance is an ideal substitute for the existing RPCHT and promotes the development of hydroacoustic transducers towards flexibility and portability.
ISSN:1424-8220