An Algebraic Approach to the Δ<i><sub>h</sub></i>-Frobenius–Genocchi–Appell Polynomials

In recent years, the generating function of mixed-type special polynomials has received growing interest in several fields of applied sciences and physics. This article intends to study a new class of polynomials, called the <inline-formula><math xmlns="http://www.w3.org/1998/Math/Math...

Full description

Bibliographic Details
Main Authors: Shahid Ahmad Wani, Sarfaraj Shaikh, Parvez Alam, Shahid Tamboli, Mohra Zayed, Javid G. Dar, Mohammad Younus Bhat
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/9/2029
_version_ 1797602202245660672
author Shahid Ahmad Wani
Sarfaraj Shaikh
Parvez Alam
Shahid Tamboli
Mohra Zayed
Javid G. Dar
Mohammad Younus Bhat
author_facet Shahid Ahmad Wani
Sarfaraj Shaikh
Parvez Alam
Shahid Tamboli
Mohra Zayed
Javid G. Dar
Mohammad Younus Bhat
author_sort Shahid Ahmad Wani
collection DOAJ
description In recent years, the generating function of mixed-type special polynomials has received growing interest in several fields of applied sciences and physics. This article intends to study a new class of polynomials, called the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>h</mi></msub></semantics></math></inline-formula>-Frobenius–Genocchi–Appell polynomials. The generating function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>h</mi></msub></semantics></math></inline-formula>-Frobenius–Genocchi–Appell polynomials is constructed and some of their fundamental properties are studied. By making use of this generating function, we investigate some novel and interesting results, such as recurrence relations, explicit representations, and implicit formulas for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>h</mi></msub></semantics></math></inline-formula>-Frobenius–Genocchi–Appell polynomials. The quasi-monomiality and determinant form for these polynomials are established. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>h</mi></msub></semantics></math></inline-formula>-Genocchi–Appell polynomials are explored as a special case and several results for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>h</mi></msub></semantics></math></inline-formula>-Genocchi–Appell polynomials are also obtained.
first_indexed 2024-03-11T04:13:39Z
format Article
id doaj.art-e29ee6e1e86f4e74bdee940a70124d82
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T04:13:39Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-e29ee6e1e86f4e74bdee940a70124d822023-11-17T23:19:04ZengMDPI AGMathematics2227-73902023-04-01119202910.3390/math11092029An Algebraic Approach to the Δ<i><sub>h</sub></i>-Frobenius–Genocchi–Appell PolynomialsShahid Ahmad Wani0Sarfaraj Shaikh1Parvez Alam2Shahid Tamboli3Mohra Zayed4Javid G. Dar5Mohammad Younus Bhat6Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Pune 412115, IndiaDepartment Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Pune 412115, IndiaDepartment of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 600127, IndiaDepartment Mechanical Engineering, Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Pune 412115, IndiaMathematics Department, College of Science, King Khalid University, Abha 61421, Saudi ArabiaDepartment of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Pune 412115, IndiaDepartment of Mathematical Sciences, Islamic University of Science and Technology, Kashmir 192122, IndiaIn recent years, the generating function of mixed-type special polynomials has received growing interest in several fields of applied sciences and physics. This article intends to study a new class of polynomials, called the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>h</mi></msub></semantics></math></inline-formula>-Frobenius–Genocchi–Appell polynomials. The generating function of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>h</mi></msub></semantics></math></inline-formula>-Frobenius–Genocchi–Appell polynomials is constructed and some of their fundamental properties are studied. By making use of this generating function, we investigate some novel and interesting results, such as recurrence relations, explicit representations, and implicit formulas for the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>h</mi></msub></semantics></math></inline-formula>-Frobenius–Genocchi–Appell polynomials. The quasi-monomiality and determinant form for these polynomials are established. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>h</mi></msub></semantics></math></inline-formula>-Genocchi–Appell polynomials are explored as a special case and several results for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mo>Δ</mo><mi>h</mi></msub></semantics></math></inline-formula>-Genocchi–Appell polynomials are also obtained.https://www.mdpi.com/2227-7390/11/9/2029Frobenius–Genocchi polynomialsΔ<i><sub>h</sub></i>–Appell polynomialsquasi-monomialitydeterminant form
spellingShingle Shahid Ahmad Wani
Sarfaraj Shaikh
Parvez Alam
Shahid Tamboli
Mohra Zayed
Javid G. Dar
Mohammad Younus Bhat
An Algebraic Approach to the Δ<i><sub>h</sub></i>-Frobenius–Genocchi–Appell Polynomials
Mathematics
Frobenius–Genocchi polynomials
Δ<i><sub>h</sub></i>–Appell polynomials
quasi-monomiality
determinant form
title An Algebraic Approach to the Δ<i><sub>h</sub></i>-Frobenius–Genocchi–Appell Polynomials
title_full An Algebraic Approach to the Δ<i><sub>h</sub></i>-Frobenius–Genocchi–Appell Polynomials
title_fullStr An Algebraic Approach to the Δ<i><sub>h</sub></i>-Frobenius–Genocchi–Appell Polynomials
title_full_unstemmed An Algebraic Approach to the Δ<i><sub>h</sub></i>-Frobenius–Genocchi–Appell Polynomials
title_short An Algebraic Approach to the Δ<i><sub>h</sub></i>-Frobenius–Genocchi–Appell Polynomials
title_sort algebraic approach to the δ i sub h sub i frobenius genocchi appell polynomials
topic Frobenius–Genocchi polynomials
Δ<i><sub>h</sub></i>–Appell polynomials
quasi-monomiality
determinant form
url https://www.mdpi.com/2227-7390/11/9/2029
work_keys_str_mv AT shahidahmadwani analgebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT sarfarajshaikh analgebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT parvezalam analgebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT shahidtamboli analgebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT mohrazayed analgebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT javidgdar analgebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT mohammadyounusbhat analgebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT shahidahmadwani algebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT sarfarajshaikh algebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT parvezalam algebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT shahidtamboli algebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT mohrazayed algebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT javidgdar algebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials
AT mohammadyounusbhat algebraicapproachtothedisubhsubifrobeniusgenocchiappellpolynomials