O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential

Abstract We derive an analytical expression for the contribution of the order mα 2(Zα)6 to the hydrogen Lamb shift which comes from the diagrams for radiative corrections to the Wichmann-Kroll potential. We use modern methods of multiloop calculations, based on IBP reduction, DRA method and differen...

Full description

Bibliographic Details
Main Authors: Petr A. Krachkov, Roman N. Lee
Format: Article
Language:English
Published: SpringerOpen 2023-12-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP12(2023)147
_version_ 1827301421817528320
author Petr A. Krachkov
Roman N. Lee
author_facet Petr A. Krachkov
Roman N. Lee
author_sort Petr A. Krachkov
collection DOAJ
description Abstract We derive an analytical expression for the contribution of the order mα 2(Zα)6 to the hydrogen Lamb shift which comes from the diagrams for radiative corrections to the Wichmann-Kroll potential. We use modern methods of multiloop calculations, based on IBP reduction, DRA method and differential equations.
first_indexed 2024-03-08T19:49:46Z
format Article
id doaj.art-e29f18504d4b472c93e0f9fd21300638
institution Directory Open Access Journal
issn 1029-8479
language English
last_indexed 2024-04-24T16:22:52Z
publishDate 2023-12-01
publisher SpringerOpen
record_format Article
series Journal of High Energy Physics
spelling doaj.art-e29f18504d4b472c93e0f9fd213006382024-03-31T11:08:54ZengSpringerOpenJournal of High Energy Physics1029-84792023-12-012023121910.1007/JHEP12(2023)147O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potentialPetr A. Krachkov0Roman N. Lee1Budker Institute of Nuclear PhysicsBudker Institute of Nuclear PhysicsAbstract We derive an analytical expression for the contribution of the order mα 2(Zα)6 to the hydrogen Lamb shift which comes from the diagrams for radiative corrections to the Wichmann-Kroll potential. We use modern methods of multiloop calculations, based on IBP reduction, DRA method and differential equations.https://doi.org/10.1007/JHEP12(2023)147Higher Order Electroweak CalculationsPrecision QED
spellingShingle Petr A. Krachkov
Roman N. Lee
O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential
Journal of High Energy Physics
Higher Order Electroweak Calculations
Precision QED
title O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential
title_full O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential
title_fullStr O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential
title_full_unstemmed O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential
title_short O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential
title_sort o mathcal o mα 2 zα 6 contribution to lamb shift from radiative corrections to the wichmann kroll potential
topic Higher Order Electroweak Calculations
Precision QED
url https://doi.org/10.1007/JHEP12(2023)147
work_keys_str_mv AT petrakrachkov omathcaloma2za6contributiontolambshiftfromradiativecorrectionstothewichmannkrollpotential
AT romannlee omathcaloma2za6contributiontolambshiftfromradiativecorrectionstothewichmannkrollpotential