O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential
Abstract We derive an analytical expression for the contribution of the order mα 2(Zα)6 to the hydrogen Lamb shift which comes from the diagrams for radiative corrections to the Wichmann-Kroll potential. We use modern methods of multiloop calculations, based on IBP reduction, DRA method and differen...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2023-12-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP12(2023)147 |
_version_ | 1827301421817528320 |
---|---|
author | Petr A. Krachkov Roman N. Lee |
author_facet | Petr A. Krachkov Roman N. Lee |
author_sort | Petr A. Krachkov |
collection | DOAJ |
description | Abstract We derive an analytical expression for the contribution of the order mα 2(Zα)6 to the hydrogen Lamb shift which comes from the diagrams for radiative corrections to the Wichmann-Kroll potential. We use modern methods of multiloop calculations, based on IBP reduction, DRA method and differential equations. |
first_indexed | 2024-03-08T19:49:46Z |
format | Article |
id | doaj.art-e29f18504d4b472c93e0f9fd21300638 |
institution | Directory Open Access Journal |
issn | 1029-8479 |
language | English |
last_indexed | 2024-04-24T16:22:52Z |
publishDate | 2023-12-01 |
publisher | SpringerOpen |
record_format | Article |
series | Journal of High Energy Physics |
spelling | doaj.art-e29f18504d4b472c93e0f9fd213006382024-03-31T11:08:54ZengSpringerOpenJournal of High Energy Physics1029-84792023-12-012023121910.1007/JHEP12(2023)147O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potentialPetr A. Krachkov0Roman N. Lee1Budker Institute of Nuclear PhysicsBudker Institute of Nuclear PhysicsAbstract We derive an analytical expression for the contribution of the order mα 2(Zα)6 to the hydrogen Lamb shift which comes from the diagrams for radiative corrections to the Wichmann-Kroll potential. We use modern methods of multiloop calculations, based on IBP reduction, DRA method and differential equations.https://doi.org/10.1007/JHEP12(2023)147Higher Order Electroweak CalculationsPrecision QED |
spellingShingle | Petr A. Krachkov Roman N. Lee O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential Journal of High Energy Physics Higher Order Electroweak Calculations Precision QED |
title | O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential |
title_full | O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential |
title_fullStr | O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential |
title_full_unstemmed | O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential |
title_short | O $$ \mathcal{O} $$ (mα 2(Zα)6) contribution to Lamb shift from radiative corrections to the Wichmann-Kroll potential |
title_sort | o mathcal o mα 2 zα 6 contribution to lamb shift from radiative corrections to the wichmann kroll potential |
topic | Higher Order Electroweak Calculations Precision QED |
url | https://doi.org/10.1007/JHEP12(2023)147 |
work_keys_str_mv | AT petrakrachkov omathcaloma2za6contributiontolambshiftfromradiativecorrectionstothewichmannkrollpotential AT romannlee omathcaloma2za6contributiontolambshiftfromradiativecorrectionstothewichmannkrollpotential |