High-dimensional Lehmer problem on Beatty sequences

Let $ q $ be a positive integer. For each integer $ a $ with $ 1 \leqslant a < q $ and $ (a, q) = 1 $, it is clear that there exists one and only one $ \bar{a} $ with $ 1 \leqslant\bar{a} < q $ such that $ a \bar{a} \equiv 1(q) $. Let $ k $ be any fixed integer with $ k \geq 2, 0 &...

Full description

Bibliographic Details
Main Authors: Xiaoqing Zhao, Yuan Yi
Format: Article
Language:English
Published: AIMS Press 2023-04-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2023684?viewType=HTML
_version_ 1797844084368343040
author Xiaoqing Zhao
Yuan Yi
author_facet Xiaoqing Zhao
Yuan Yi
author_sort Xiaoqing Zhao
collection DOAJ
description Let $ q $ be a positive integer. For each integer $ a $ with $ 1 \leqslant a < q $ and $ (a, q) = 1 $, it is clear that there exists one and only one $ \bar{a} $ with $ 1 \leqslant\bar{a} < q $ such that $ a \bar{a} \equiv 1(q) $. Let $ k $ be any fixed integer with $ k \geq 2, 0 < \delta_{i} \leq 1, i = 1, 2, \cdots, k. $ $ r_{n}\left(\delta_{1}, \delta_{2}, \cdots, \delta_{k}, \alpha, \beta, c; q\right) $ denotes the number of all $ k $-tuples with positive integer coordinates $ \left(x_{1}, x_{2}, \ldots, x_{k}\right) $ such that $ 1 \leq x_{i} \leq \delta_{i}q, \left(x_{i}, q\right) = 1, x_{1} x_{2} \cdots x_{k} \equiv c(q) $, and $ x_{1}, x_{2}, \cdots, x_{k-1} \in B_{\alpha, \beta} $. In this paper, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals and give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.
first_indexed 2024-04-09T17:16:42Z
format Article
id doaj.art-e2a1a5c0873045be9e2aef8b1dce30ab
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-04-09T17:16:42Z
publishDate 2023-04-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-e2a1a5c0873045be9e2aef8b1dce30ab2023-04-20T01:21:20ZengAIMS PressAIMS Mathematics2473-69882023-04-0186134921350210.3934/math.2023684High-dimensional Lehmer problem on Beatty sequencesXiaoqing Zhao0Yuan Yi 1School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, ChinaSchool of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, ChinaLet $ q $ be a positive integer. For each integer $ a $ with $ 1 \leqslant a < q $ and $ (a, q) = 1 $, it is clear that there exists one and only one $ \bar{a} $ with $ 1 \leqslant\bar{a} < q $ such that $ a \bar{a} \equiv 1(q) $. Let $ k $ be any fixed integer with $ k \geq 2, 0 < \delta_{i} \leq 1, i = 1, 2, \cdots, k. $ $ r_{n}\left(\delta_{1}, \delta_{2}, \cdots, \delta_{k}, \alpha, \beta, c; q\right) $ denotes the number of all $ k $-tuples with positive integer coordinates $ \left(x_{1}, x_{2}, \ldots, x_{k}\right) $ such that $ 1 \leq x_{i} \leq \delta_{i}q, \left(x_{i}, q\right) = 1, x_{1} x_{2} \cdots x_{k} \equiv c(q) $, and $ x_{1}, x_{2}, \cdots, x_{k-1} \in B_{\alpha, \beta} $. In this paper, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals and give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.https://www.aimspress.com/article/doi/10.3934/math.2023684?viewType=HTMLthe lehmer problembeatty sequenceexponential sumasymptotic formula
spellingShingle Xiaoqing Zhao
Yuan Yi
High-dimensional Lehmer problem on Beatty sequences
AIMS Mathematics
the lehmer problem
beatty sequence
exponential sum
asymptotic formula
title High-dimensional Lehmer problem on Beatty sequences
title_full High-dimensional Lehmer problem on Beatty sequences
title_fullStr High-dimensional Lehmer problem on Beatty sequences
title_full_unstemmed High-dimensional Lehmer problem on Beatty sequences
title_short High-dimensional Lehmer problem on Beatty sequences
title_sort high dimensional lehmer problem on beatty sequences
topic the lehmer problem
beatty sequence
exponential sum
asymptotic formula
url https://www.aimspress.com/article/doi/10.3934/math.2023684?viewType=HTML
work_keys_str_mv AT xiaoqingzhao highdimensionallehmerproblemonbeattysequences
AT yuanyi highdimensionallehmerproblemonbeattysequences