Economic and Environmental Assessment Using Two Renewable Sources of Energy to Produce Heat and Power for Industrial Applications

Economic criteria have prevailed in studies on integration of renewable energies. Tons of dangerous emissions are emitted by a biomass fuel, causing negative impacts over atmosphere and health. Current research proposes Pinch Analysis of solar thermal energy and the joint use of biomass (sugarcane b...

Full description

Bibliographic Details
Main Authors: Guillermo Martínez-Rodríguez, Juan-Carlos Baltazar, Amanda L. Fuentes-Silva, Rafael García-Gutiérrez
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/7/2338
_version_ 1797439641313345536
author Guillermo Martínez-Rodríguez
Juan-Carlos Baltazar
Amanda L. Fuentes-Silva
Rafael García-Gutiérrez
author_facet Guillermo Martínez-Rodríguez
Juan-Carlos Baltazar
Amanda L. Fuentes-Silva
Rafael García-Gutiérrez
author_sort Guillermo Martínez-Rodríguez
collection DOAJ
description Economic criteria have prevailed in studies on integration of renewable energies. Tons of dangerous emissions are emitted by a biomass fuel, causing negative impacts over atmosphere and health. Current research proposes Pinch Analysis of solar thermal energy and the joint use of biomass (sugarcane bagasse) to produce heat and power in a Caribbean sugar mill; measuring emissions like: carbon oxide <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>O</mi><mo>,</mo></mrow></semantics></math></inline-formula> carbon dioxide <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub><mo>,</mo></mrow></semantics></math></inline-formula> dinitrogen monoxide <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi><mo>,</mo></mrow></semantics></math></inline-formula> nitrogen oxides <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula>, sulfur oxides <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>O</mi><mi>x</mi></msub><mo>,</mo></mrow></semantics></math></inline-formula> non-methane volatile organic compounds NMVOC, methane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>H</mi><mn>4</mn></msub></mrow></semantics></math></inline-formula>, and particulate matters, to have a global and clear view of the impacts of biomass as a renewable fuel. Variables like kWh cost, the installation and device area of renewable energy, and greenhouse gas emissions, are analysed to assess the effect on the integration final design, the target of which is to control the use of biomass. It is possible to produce an economically competitive integration design of solar system <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi><mi>O</mi><msub><mi>E</mi><mrow><mi>t</mi><mi>h</mi><mo> </mo><mi>s</mi><mi>o</mi><mi>l</mi><mi>a</mi><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula> = 0.0636 USD/kWh, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi><mi>O</mi><msub><mi>E</mi><mrow><mi>e</mi><mi>l</mi><mi>e</mi></mrow></msub></mrow></semantics></math></inline-formula> = 0.1392 USD/kWh), zero greenhouse gases emissions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mo>Δ</mo><msub><mi>T</mi><mrow><mi>m</mi><mi>i</mi><mi>n</mi><mi>r</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>=</mo><mn>7</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>), and deletion of 378,711.53 t/year of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> and 9567.56 t/year of solid particles. There are many possibilities that can implemented; in one of them, bagasse burning is reduced by 30% and the solar collector network for required power production is reduced by 68%.
first_indexed 2024-03-09T11:57:01Z
format Article
id doaj.art-e2ab1e494d7e4456b055face182c3f19
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-09T11:57:01Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-e2ab1e494d7e4456b055face182c3f192023-11-30T23:08:50ZengMDPI AGEnergies1996-10732022-03-01157233810.3390/en15072338Economic and Environmental Assessment Using Two Renewable Sources of Energy to Produce Heat and Power for Industrial ApplicationsGuillermo Martínez-Rodríguez0Juan-Carlos Baltazar1Amanda L. Fuentes-Silva2Rafael García-Gutiérrez3Department of Chemical Engineering, University of Guanajuato, Guanajuato 36050, MexicoEnergy Systems Laboratory, TEES, 7607 Eastmark Drive, College Station, TX 77840, USADepartment of Chemical Engineering, University of Guanajuato, Guanajuato 36050, MexicoPhysics Research Department, Universidad de Sonora, Hermosillo 83000, MexicoEconomic criteria have prevailed in studies on integration of renewable energies. Tons of dangerous emissions are emitted by a biomass fuel, causing negative impacts over atmosphere and health. Current research proposes Pinch Analysis of solar thermal energy and the joint use of biomass (sugarcane bagasse) to produce heat and power in a Caribbean sugar mill; measuring emissions like: carbon oxide <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mi>O</mi><mo>,</mo></mrow></semantics></math></inline-formula> carbon dioxide <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub><mo>,</mo></mrow></semantics></math></inline-formula> dinitrogen monoxide <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>N</mi><mn>2</mn></msub><mi>O</mi><mo>,</mo></mrow></semantics></math></inline-formula> nitrogen oxides <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><msub><mi>O</mi><mi>x</mi></msub></mrow></semantics></math></inline-formula>, sulfur oxides <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>O</mi><mi>x</mi></msub><mo>,</mo></mrow></semantics></math></inline-formula> non-methane volatile organic compounds NMVOC, methane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>H</mi><mn>4</mn></msub></mrow></semantics></math></inline-formula>, and particulate matters, to have a global and clear view of the impacts of biomass as a renewable fuel. Variables like kWh cost, the installation and device area of renewable energy, and greenhouse gas emissions, are analysed to assess the effect on the integration final design, the target of which is to control the use of biomass. It is possible to produce an economically competitive integration design of solar system <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi><mi>O</mi><msub><mi>E</mi><mrow><mi>t</mi><mi>h</mi><mo> </mo><mi>s</mi><mi>o</mi><mi>l</mi><mi>a</mi><mi>r</mi></mrow></msub></mrow></semantics></math></inline-formula> = 0.0636 USD/kWh, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi><mi>O</mi><msub><mi>E</mi><mrow><mi>e</mi><mi>l</mi><mi>e</mi></mrow></msub></mrow></semantics></math></inline-formula> = 0.1392 USD/kWh), zero greenhouse gases emissions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><mo>Δ</mo><msub><mi>T</mi><mrow><mi>m</mi><mi>i</mi><mi>n</mi><mi>r</mi><mi>e</mi><mi>w</mi></mrow></msub><mo>=</mo><mn>7</mn><mo> </mo><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>), and deletion of 378,711.53 t/year of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><msub><mi>O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> and 9567.56 t/year of solid particles. There are many possibilities that can implemented; in one of them, bagasse burning is reduced by 30% and the solar collector network for required power production is reduced by 68%.https://www.mdpi.com/1996-1073/15/7/2338renewable energiespower and heat productiongreenhouse gases emissionszero emissionsPinch Analysisbiomass
spellingShingle Guillermo Martínez-Rodríguez
Juan-Carlos Baltazar
Amanda L. Fuentes-Silva
Rafael García-Gutiérrez
Economic and Environmental Assessment Using Two Renewable Sources of Energy to Produce Heat and Power for Industrial Applications
Energies
renewable energies
power and heat production
greenhouse gases emissions
zero emissions
Pinch Analysis
biomass
title Economic and Environmental Assessment Using Two Renewable Sources of Energy to Produce Heat and Power for Industrial Applications
title_full Economic and Environmental Assessment Using Two Renewable Sources of Energy to Produce Heat and Power for Industrial Applications
title_fullStr Economic and Environmental Assessment Using Two Renewable Sources of Energy to Produce Heat and Power for Industrial Applications
title_full_unstemmed Economic and Environmental Assessment Using Two Renewable Sources of Energy to Produce Heat and Power for Industrial Applications
title_short Economic and Environmental Assessment Using Two Renewable Sources of Energy to Produce Heat and Power for Industrial Applications
title_sort economic and environmental assessment using two renewable sources of energy to produce heat and power for industrial applications
topic renewable energies
power and heat production
greenhouse gases emissions
zero emissions
Pinch Analysis
biomass
url https://www.mdpi.com/1996-1073/15/7/2338
work_keys_str_mv AT guillermomartinezrodriguez economicandenvironmentalassessmentusingtworenewablesourcesofenergytoproduceheatandpowerforindustrialapplications
AT juancarlosbaltazar economicandenvironmentalassessmentusingtworenewablesourcesofenergytoproduceheatandpowerforindustrialapplications
AT amandalfuentessilva economicandenvironmentalassessmentusingtworenewablesourcesofenergytoproduceheatandpowerforindustrialapplications
AT rafaelgarciagutierrez economicandenvironmentalassessmentusingtworenewablesourcesofenergytoproduceheatandpowerforindustrialapplications