A directed genome evolution method to enhance hydrogen production in Rhodobacter capsulatus

Nitrogenase-dependent H2 production by photosynthetic bacteria, such as Rhodobacter capsulatus, has been extensively investigated. An important limitation to increase H2 production using genetic manipulation is the scarcity of high-throughput screening methods to detect possible overproducing mutant...

Full description

Bibliographic Details
Main Authors: Emma Barahona, Elisa San Isidro, Laura Sierra-Heras, Inés Álvarez-Melcón, Emilio Jiménez-Vicente, José María Buesa, Juan Imperial, Luis M. Rubio
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-08-01
Series:Frontiers in Microbiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmicb.2022.991123/full
_version_ 1818513384398651392
author Emma Barahona
Elisa San Isidro
Laura Sierra-Heras
Inés Álvarez-Melcón
Emilio Jiménez-Vicente
José María Buesa
Juan Imperial
Luis M. Rubio
Luis M. Rubio
author_facet Emma Barahona
Elisa San Isidro
Laura Sierra-Heras
Inés Álvarez-Melcón
Emilio Jiménez-Vicente
José María Buesa
Juan Imperial
Luis M. Rubio
Luis M. Rubio
author_sort Emma Barahona
collection DOAJ
description Nitrogenase-dependent H2 production by photosynthetic bacteria, such as Rhodobacter capsulatus, has been extensively investigated. An important limitation to increase H2 production using genetic manipulation is the scarcity of high-throughput screening methods to detect possible overproducing mutants. Previously, we engineered R. capsulatus strains that emitted fluorescence in response to H2 and used them to identify mutations in the nitrogenase Fe protein leading to H2 overproduction. Here, we used ultraviolet light to induce random mutations in the genome of the engineered H2-sensing strain, and fluorescent-activated cell sorting to detect and isolate the H2-overproducing cells from libraries containing 5 × 105 mutants. Three rounds of mutagenesis and strain selection gradually increased H2 production up to 3-fold. The whole genomes of five H2 overproducing strains were sequenced and compared to that of the parental sensor strain to determine the basis for H2 overproduction. No mutations were present in well-characterized functions related to nitrogen fixation, except for the transcriptional activator nifA2. However, several mutations mapped to energy-generating systems and to carbon metabolism-related functions, which could feed reducing power or ATP to nitrogenase. Time-course experiments of nitrogenase depression in batch cultures exposed mismatches between nitrogenase protein levels and their H2 and ethylene production activities that suggested energy limitation. Consistently, cultivating in a chemostat produced up to 19-fold more H2 than the corresponding batch cultures, revealing the potential of selected H2 overproducing strains.
first_indexed 2024-12-11T00:00:33Z
format Article
id doaj.art-e2ab7100a6fe4a11b4b340fd9afbdf1e
institution Directory Open Access Journal
issn 1664-302X
language English
last_indexed 2024-12-11T00:00:33Z
publishDate 2022-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Microbiology
spelling doaj.art-e2ab7100a6fe4a11b4b340fd9afbdf1e2022-12-22T01:28:28ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2022-08-011310.3389/fmicb.2022.991123991123A directed genome evolution method to enhance hydrogen production in Rhodobacter capsulatusEmma Barahona0Elisa San Isidro1Laura Sierra-Heras2Inés Álvarez-Melcón3Emilio Jiménez-Vicente4José María Buesa5Juan Imperial6Luis M. Rubio7Luis M. Rubio8Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, SpainCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, SpainCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, SpainCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, SpainCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, SpainCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, SpainCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, SpainCentro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, SpainDepartamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, SpainNitrogenase-dependent H2 production by photosynthetic bacteria, such as Rhodobacter capsulatus, has been extensively investigated. An important limitation to increase H2 production using genetic manipulation is the scarcity of high-throughput screening methods to detect possible overproducing mutants. Previously, we engineered R. capsulatus strains that emitted fluorescence in response to H2 and used them to identify mutations in the nitrogenase Fe protein leading to H2 overproduction. Here, we used ultraviolet light to induce random mutations in the genome of the engineered H2-sensing strain, and fluorescent-activated cell sorting to detect and isolate the H2-overproducing cells from libraries containing 5 × 105 mutants. Three rounds of mutagenesis and strain selection gradually increased H2 production up to 3-fold. The whole genomes of five H2 overproducing strains were sequenced and compared to that of the parental sensor strain to determine the basis for H2 overproduction. No mutations were present in well-characterized functions related to nitrogen fixation, except for the transcriptional activator nifA2. However, several mutations mapped to energy-generating systems and to carbon metabolism-related functions, which could feed reducing power or ATP to nitrogenase. Time-course experiments of nitrogenase depression in batch cultures exposed mismatches between nitrogenase protein levels and their H2 and ethylene production activities that suggested energy limitation. Consistently, cultivating in a chemostat produced up to 19-fold more H2 than the corresponding batch cultures, revealing the potential of selected H2 overproducing strains.https://www.frontiersin.org/articles/10.3389/fmicb.2022.991123/fullnitrogenaseflow cytometryhydrogenasebiological hydrogen productionhupAmutagenesis
spellingShingle Emma Barahona
Elisa San Isidro
Laura Sierra-Heras
Inés Álvarez-Melcón
Emilio Jiménez-Vicente
José María Buesa
Juan Imperial
Luis M. Rubio
Luis M. Rubio
A directed genome evolution method to enhance hydrogen production in Rhodobacter capsulatus
Frontiers in Microbiology
nitrogenase
flow cytometry
hydrogenase
biological hydrogen production
hupA
mutagenesis
title A directed genome evolution method to enhance hydrogen production in Rhodobacter capsulatus
title_full A directed genome evolution method to enhance hydrogen production in Rhodobacter capsulatus
title_fullStr A directed genome evolution method to enhance hydrogen production in Rhodobacter capsulatus
title_full_unstemmed A directed genome evolution method to enhance hydrogen production in Rhodobacter capsulatus
title_short A directed genome evolution method to enhance hydrogen production in Rhodobacter capsulatus
title_sort directed genome evolution method to enhance hydrogen production in rhodobacter capsulatus
topic nitrogenase
flow cytometry
hydrogenase
biological hydrogen production
hupA
mutagenesis
url https://www.frontiersin.org/articles/10.3389/fmicb.2022.991123/full
work_keys_str_mv AT emmabarahona adirectedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT elisasanisidro adirectedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT laurasierraheras adirectedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT inesalvarezmelcon adirectedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT emiliojimenezvicente adirectedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT josemariabuesa adirectedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT juanimperial adirectedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT luismrubio adirectedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT luismrubio adirectedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT emmabarahona directedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT elisasanisidro directedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT laurasierraheras directedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT inesalvarezmelcon directedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT emiliojimenezvicente directedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT josemariabuesa directedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT juanimperial directedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT luismrubio directedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus
AT luismrubio directedgenomeevolutionmethodtoenhancehydrogenproductioninrhodobactercapsulatus