Recent developments on UDP-N-acetylmuramoyl-L-alanine-D-gutamate ligase (Mur D) enzyme for antimicrobial drug development: An emphasis on in-silico approaches

Introduction: The rapid emergence of antibiotic resistance among various bacterial pathogens has been one of the major concerns of health organizations across the world. In this context, for the development of novel inhibitors against antibiotic-resistant bacterial pathogens, UDP-N-Acetylmuramoyl-L-...

Full description

Bibliographic Details
Main Authors: Vinita Gaur, Surojit Bera
Format: Article
Language:English
Published: Elsevier 2022-01-01
Series:Current Research in Pharmacology and Drug Discovery
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2590257122000578
Description
Summary:Introduction: The rapid emergence of antibiotic resistance among various bacterial pathogens has been one of the major concerns of health organizations across the world. In this context, for the development of novel inhibitors against antibiotic-resistant bacterial pathogens, UDP-N-Acetylmuramoyl-L-Alanine-D-Glutamate Ligase (MurD) enzyme represents one of the most apposite targets. Body: The present review focuses on updated advancements on MurD-targeted inhibitors in recent years along with genetic regulation, structural and functional characteristics of the MurD enzyme from various bacterial pathogens. A concise account of various crystal structures of MurD enzyme, submitted into Protein Data Bank is also discussed. Discussion: MurD, an ATP dependent cytoplasmic enzyme is an important target for drug discovery. The genetic organization of MurD enzyme is well elucidated and many crystal structures of MurD enzyme are submitted into Protein Data bank. Various inhibitors against MurD enzyme have been developed so far with an increase in the use of in-silico methods in the recent past. But cell permeability barriers and conformational changes of MurD enzyme during catalytic reaction need to be addressed for effective drug development. So, a combination of in-silico methods along with experimental work is proposed to counter the catalytic machinery of MurD enzyme.
ISSN:2590-2571