An extension of Herstein's theorem on Banach algebra

Let $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic identity $ 2\mathcal{H}(a^{p+q}) = \mathcal{H}(a^p) a^q+ a^p \mathcal{D}(a^q)+\mathcal{H}(a^q) a^p+ a^q \mat...

Full description

Bibliographic Details
Main Authors: Abu Zaid Ansari, Suad Alrehaili, Faiza Shujat
Format: Article
Language:English
Published: AIMS Press 2024-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2024201?viewType=HTML
_version_ 1827358048089276416
author Abu Zaid Ansari
Suad Alrehaili
Faiza Shujat
author_facet Abu Zaid Ansari
Suad Alrehaili
Faiza Shujat
author_sort Abu Zaid Ansari
collection DOAJ
description Let $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic identity $ 2\mathcal{H}(a^{p+q}) = \mathcal{H}(a^p) a^q+ a^p \mathcal{D}(a^q)+\mathcal{H}(a^q) a^p+ a^q \mathcal{D}(a^p) $ for all $ a\in \mathcal{A} $, then $ \mathcal{H} $ is a generalized derivation with $ \mathcal{D} $ as an associated derivation on $ \mathcal{A} $. In addition to that, it is also proved in this article that $ \mathcal{H}_1 $ is a generalized left derivation associated with a left derivation $ \delta $ on $ \mathcal{A} $ if they fulfilled the algebraic identity $ 2\mathcal{H}_1(a^{p+q}) = a^p \mathcal{H}_1(a^q)+ a^q \delta(a^p)+a^q \mathcal{H}_1(a^p)+ a^p \delta(a^q) $ for all $ a \in \mathcal{A} $. Further, the legitimacy of these hypotheses is eventually demonstrated by examples and at last, an application of Banach algebra is presented.
first_indexed 2024-03-08T05:57:07Z
format Article
id doaj.art-e2c208914f3e4a38877366c17474b0f0
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-03-08T05:57:07Z
publishDate 2024-01-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-e2c208914f3e4a38877366c17474b0f02024-02-05T01:25:44ZengAIMS PressAIMS Mathematics2473-69882024-01-01924109411710.3934/math.2024201An extension of Herstein's theorem on Banach algebraAbu Zaid Ansari 0Suad Alrehaili1Faiza Shujat21. Department of Mathematics, Faculty of Science, Islamic University of Madinah, Saudi Arabia2. Department of Mathematics, Faculty of Science, Taibah University, Madinah, Saudi Arabia2. Department of Mathematics, Faculty of Science, Taibah University, Madinah, Saudi ArabiaLet $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic identity $ 2\mathcal{H}(a^{p+q}) = \mathcal{H}(a^p) a^q+ a^p \mathcal{D}(a^q)+\mathcal{H}(a^q) a^p+ a^q \mathcal{D}(a^p) $ for all $ a\in \mathcal{A} $, then $ \mathcal{H} $ is a generalized derivation with $ \mathcal{D} $ as an associated derivation on $ \mathcal{A} $. In addition to that, it is also proved in this article that $ \mathcal{H}_1 $ is a generalized left derivation associated with a left derivation $ \delta $ on $ \mathcal{A} $ if they fulfilled the algebraic identity $ 2\mathcal{H}_1(a^{p+q}) = a^p \mathcal{H}_1(a^q)+ a^q \delta(a^p)+a^q \mathcal{H}_1(a^p)+ a^p \delta(a^q) $ for all $ a \in \mathcal{A} $. Further, the legitimacy of these hypotheses is eventually demonstrated by examples and at last, an application of Banach algebra is presented.https://www.aimspress.com/article/doi/10.3934/math.2024201?viewType=HTMLsemiprime ringgeneralized left derivationalgebraic identitiesbanach algebra
spellingShingle Abu Zaid Ansari
Suad Alrehaili
Faiza Shujat
An extension of Herstein's theorem on Banach algebra
AIMS Mathematics
semiprime ring
generalized left derivation
algebraic identities
banach algebra
title An extension of Herstein's theorem on Banach algebra
title_full An extension of Herstein's theorem on Banach algebra
title_fullStr An extension of Herstein's theorem on Banach algebra
title_full_unstemmed An extension of Herstein's theorem on Banach algebra
title_short An extension of Herstein's theorem on Banach algebra
title_sort extension of herstein s theorem on banach algebra
topic semiprime ring
generalized left derivation
algebraic identities
banach algebra
url https://www.aimspress.com/article/doi/10.3934/math.2024201?viewType=HTML
work_keys_str_mv AT abuzaidansari anextensionofhersteinstheoremonbanachalgebra
AT suadalrehaili anextensionofhersteinstheoremonbanachalgebra
AT faizashujat anextensionofhersteinstheoremonbanachalgebra
AT abuzaidansari extensionofhersteinstheoremonbanachalgebra
AT suadalrehaili extensionofhersteinstheoremonbanachalgebra
AT faizashujat extensionofhersteinstheoremonbanachalgebra