An extension of Herstein's theorem on Banach algebra
Let $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic identity $ 2\mathcal{H}(a^{p+q}) = \mathcal{H}(a^p) a^q+ a^p \mathcal{D}(a^q)+\mathcal{H}(a^q) a^p+ a^q \mat...
Main Authors: | Abu Zaid Ansari, Suad Alrehaili, Faiza Shujat |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2024-01-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.2024201?viewType=HTML |
Similar Items
-
Generalized differential identities on prime rings and algebras
by: Abu Zaid Ansari, et al.
Published: (2023-07-01) -
Almost Generalized Derivation on Banach Algebras
by: Jae-Hyeong Bae, et al.
Published: (2022-12-01) -
Generalized derivations with power values on rings and Banach algebras
by: Abderrahman Hermas, et al.
Published: (2024-12-01) -
Banach algebras /
by: 321059 Zelazko, Wieslaw
Published: (1973) -
Banach algebras /
by: 321253 Mosak, Richard D.
Published: (1975)