CRISPR/Cas9 editing reveals IRF8 regulated gene signatures restraining plasmablast differentiation
The transcription factor Interferon regulatory factor 8 (IRF8) is involved in maintaining B cell identity. However, how IRF8 regulates T cell independent B cell responses are not fully characterized. Here, an in vivo CRISPR/Cas9 system was optimized to generate Irf8-deficient murine B cells and used...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-06-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844023047357 |
Summary: | The transcription factor Interferon regulatory factor 8 (IRF8) is involved in maintaining B cell identity. However, how IRF8 regulates T cell independent B cell responses are not fully characterized. Here, an in vivo CRISPR/Cas9 system was optimized to generate Irf8-deficient murine B cells and used to determine the role of IRF8 in B cells responding to LPS stimulation. Irf8-deficient B cells more readily formed CD138+ plasmablasts in response to LPS with the principal dysregulation occurring at the activated B cell stage. Transcriptional profiling revealed an upregulation of plasma cell associated genes prematurely in activated B cells and a failure to repress the gene expression programs of IRF1 and IRF7 in Irf8-deficient cells. These data expand on the known roles of IRF8 in regulating B cell identity by preventing premature plasma cell formation and highlight how IRF8 helps evolve TLR responses away from the initial activation towards those driving humoral immunity. |
---|---|
ISSN: | 2405-8440 |