kCSD-python, reliable current source density estimation with quality control.

Interpretation of extracellular recordings can be challenging due to the long range of electric field. This challenge can be mitigated by estimating the current source density (CSD). Here we introduce kCSD-python, an open Python package implementing Kernel Current Source Density (kCSD) method and re...

Full description

Bibliographic Details
Main Authors: Chaitanya Chintaluri, Marta Bejtka, Władysław Średniawa, Michał Czerwiński, Jakub M Dzik, Joanna Jędrzejewska-Szmek, Daniel K Wójcik
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-03-01
Series:PLoS Computational Biology
Online Access:https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011941&type=printable
_version_ 1827301716061585408
author Chaitanya Chintaluri
Marta Bejtka
Władysław Średniawa
Michał Czerwiński
Jakub M Dzik
Joanna Jędrzejewska-Szmek
Daniel K Wójcik
author_facet Chaitanya Chintaluri
Marta Bejtka
Władysław Średniawa
Michał Czerwiński
Jakub M Dzik
Joanna Jędrzejewska-Szmek
Daniel K Wójcik
author_sort Chaitanya Chintaluri
collection DOAJ
description Interpretation of extracellular recordings can be challenging due to the long range of electric field. This challenge can be mitigated by estimating the current source density (CSD). Here we introduce kCSD-python, an open Python package implementing Kernel Current Source Density (kCSD) method and related tools to facilitate CSD analysis of experimental data and the interpretation of results. We show how to counter the limitations imposed by noise and assumptions in the method itself. kCSD-python allows CSD estimation for an arbitrary distribution of electrodes in 1D, 2D, and 3D, assuming distributions of sources in tissue, a slice, or in a single cell, and includes a range of diagnostic aids. We demonstrate its features in a Jupyter Notebook tutorial which illustrates a typical analytical workflow and main functionalities useful in validating analysis results.
first_indexed 2024-04-24T16:29:50Z
format Article
id doaj.art-e2d6c2fbb49f42508c9d27d90b49fed7
institution Directory Open Access Journal
issn 1553-734X
1553-7358
language English
last_indexed 2024-04-24T16:29:50Z
publishDate 2024-03-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Computational Biology
spelling doaj.art-e2d6c2fbb49f42508c9d27d90b49fed72024-03-30T05:31:53ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582024-03-01203e101194110.1371/journal.pcbi.1011941kCSD-python, reliable current source density estimation with quality control.Chaitanya ChintaluriMarta BejtkaWładysław ŚredniawaMichał CzerwińskiJakub M DzikJoanna Jędrzejewska-SzmekDaniel K WójcikInterpretation of extracellular recordings can be challenging due to the long range of electric field. This challenge can be mitigated by estimating the current source density (CSD). Here we introduce kCSD-python, an open Python package implementing Kernel Current Source Density (kCSD) method and related tools to facilitate CSD analysis of experimental data and the interpretation of results. We show how to counter the limitations imposed by noise and assumptions in the method itself. kCSD-python allows CSD estimation for an arbitrary distribution of electrodes in 1D, 2D, and 3D, assuming distributions of sources in tissue, a slice, or in a single cell, and includes a range of diagnostic aids. We demonstrate its features in a Jupyter Notebook tutorial which illustrates a typical analytical workflow and main functionalities useful in validating analysis results.https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011941&type=printable
spellingShingle Chaitanya Chintaluri
Marta Bejtka
Władysław Średniawa
Michał Czerwiński
Jakub M Dzik
Joanna Jędrzejewska-Szmek
Daniel K Wójcik
kCSD-python, reliable current source density estimation with quality control.
PLoS Computational Biology
title kCSD-python, reliable current source density estimation with quality control.
title_full kCSD-python, reliable current source density estimation with quality control.
title_fullStr kCSD-python, reliable current source density estimation with quality control.
title_full_unstemmed kCSD-python, reliable current source density estimation with quality control.
title_short kCSD-python, reliable current source density estimation with quality control.
title_sort kcsd python reliable current source density estimation with quality control
url https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011941&type=printable
work_keys_str_mv AT chaitanyachintaluri kcsdpythonreliablecurrentsourcedensityestimationwithqualitycontrol
AT martabejtka kcsdpythonreliablecurrentsourcedensityestimationwithqualitycontrol
AT władysławsredniawa kcsdpythonreliablecurrentsourcedensityestimationwithqualitycontrol
AT michałczerwinski kcsdpythonreliablecurrentsourcedensityestimationwithqualitycontrol
AT jakubmdzik kcsdpythonreliablecurrentsourcedensityestimationwithqualitycontrol
AT joannajedrzejewskaszmek kcsdpythonreliablecurrentsourcedensityestimationwithqualitycontrol
AT danielkwojcik kcsdpythonreliablecurrentsourcedensityestimationwithqualitycontrol