Design and Modification of a High-Resolution Optical Interferometer Accelerometer

The Micro-Opto-Electro-Mechanical Systems (MOEMS) accelerometer is a new type of accelerometer that combines the merits of optical measurement and Micro-Electro-Mechanical Systems (MEMS) to enable high precision, small volume, and anti-electromagnetism disturbance measurement of acceleration, which...

Full description

Bibliographic Details
Main Authors: Yuan Yao, Debin Pan, Jianbo Wang, Tingting Dong, Jie Guo, Chensheng Wang, Anbing Geng, Weidong Fang, Qianbo Lu
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/6/2070
Description
Summary:The Micro-Opto-Electro-Mechanical Systems (MOEMS) accelerometer is a new type of accelerometer that combines the merits of optical measurement and Micro-Electro-Mechanical Systems (MEMS) to enable high precision, small volume, and anti-electromagnetism disturbance measurement of acceleration, which makes it a promising candidate for inertial navigation and seismic monitoring. This paper proposes a modified micro-grating-based accelerometer and introduces a new design method to characterize the grating interferometer. A MEMS sensor chip with high sensitivity was designed and fabricated, and the processing circuit was modified. The micro-grating interference measurement system was modeled, and the response sensitivity was analyzed. The accelerometer was then built and benchmarked with a commercial seismometer in detail. Compared to the previous prototype in the experiment, the results indicate that the noise floor has an ultra-low self-noise of 15 ng/Hz<sup>1/2</sup>.
ISSN:1424-8220