Approximation to clothoid in same length via G1 quintic Pythogrean Hodograph splines(用G1 5次PH曲线等弧长逼近clothoid曲线)
PH曲线是弧长为多项式的Bézier曲线,其等距线可用有理多项式表示.由clothoid曲线端点的G1 Hermite插值条件,构造对应等弧长的最佳G1 5次PH插值曲线,以此作为逼近.利用微分几何中的Frenet-Serret公式和经典的Taylor展开式,推导该逼近方式的误差、等距线误差和曲率误差.最后,给出在误差范围内,将clothoid曲线转化为等弧长G1 5次PH样条及等距线生成的算法....
Main Author: | |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2012-01-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2012.01.006 |
_version_ | 1797236078620442624 |
---|---|
author | ZHENGZhi-hao(郑志浩) |
author_facet | ZHENGZhi-hao(郑志浩) |
author_sort | ZHENGZhi-hao(郑志浩) |
collection | DOAJ |
description | PH曲线是弧长为多项式的Bézier曲线,其等距线可用有理多项式表示.由clothoid曲线端点的G1 Hermite插值条件,构造对应等弧长的最佳G1 5次PH插值曲线,以此作为逼近.利用微分几何中的Frenet-Serret公式和经典的Taylor展开式,推导该逼近方式的误差、等距线误差和曲率误差.最后,给出在误差范围内,将clothoid曲线转化为等弧长G1 5次PH样条及等距线生成的算法. |
first_indexed | 2024-04-24T16:58:08Z |
format | Article |
id | doaj.art-e314d1585d194e8d9f38f08de11f1f24 |
institution | Directory Open Access Journal |
issn | 1008-9497 |
language | zho |
last_indexed | 2024-04-24T16:58:08Z |
publishDate | 2012-01-01 |
publisher | Zhejiang University Press |
record_format | Article |
series | Zhejiang Daxue xuebao. Lixue ban |
spelling | doaj.art-e314d1585d194e8d9f38f08de11f1f242024-03-29T01:58:30ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972012-01-01391202610.3785/j.issn.1008-9497.2012.01.006Approximation to clothoid in same length via G1 quintic Pythogrean Hodograph splines(用G1 5次PH曲线等弧长逼近clothoid曲线)ZHENGZhi-hao(郑志浩)0Department of Mathematics, Zhejiang University, Hangzhou 310027, China(浙江大学数学系,浙江 杭州 310027)PH曲线是弧长为多项式的Bézier曲线,其等距线可用有理多项式表示.由clothoid曲线端点的G1 Hermite插值条件,构造对应等弧长的最佳G1 5次PH插值曲线,以此作为逼近.利用微分几何中的Frenet-Serret公式和经典的Taylor展开式,推导该逼近方式的误差、等距线误差和曲率误差.最后,给出在误差范围内,将clothoid曲线转化为等弧长G1 5次PH样条及等距线生成的算法.https://doi.org/10.3785/j.issn.1008-9497.2012.01.006clothoid曲线5次ph曲线等距线frenet-serret公式taylor展开误差样条 |
spellingShingle | ZHENGZhi-hao(郑志浩) Approximation to clothoid in same length via G1 quintic Pythogrean Hodograph splines(用G1 5次PH曲线等弧长逼近clothoid曲线) Zhejiang Daxue xuebao. Lixue ban clothoid曲线 5次ph曲线 等距线 frenet-serret公式 taylor展开 误差 样条 |
title | Approximation to clothoid in same length via G1 quintic Pythogrean Hodograph splines(用G1 5次PH曲线等弧长逼近clothoid曲线) |
title_full | Approximation to clothoid in same length via G1 quintic Pythogrean Hodograph splines(用G1 5次PH曲线等弧长逼近clothoid曲线) |
title_fullStr | Approximation to clothoid in same length via G1 quintic Pythogrean Hodograph splines(用G1 5次PH曲线等弧长逼近clothoid曲线) |
title_full_unstemmed | Approximation to clothoid in same length via G1 quintic Pythogrean Hodograph splines(用G1 5次PH曲线等弧长逼近clothoid曲线) |
title_short | Approximation to clothoid in same length via G1 quintic Pythogrean Hodograph splines(用G1 5次PH曲线等弧长逼近clothoid曲线) |
title_sort | approximation to clothoid in same length via g1 quintic pythogrean hodograph splines 用g1 5次ph曲线等弧长逼近clothoid曲线 |
topic | clothoid曲线 5次ph曲线 等距线 frenet-serret公式 taylor展开 误差 样条 |
url | https://doi.org/10.3785/j.issn.1008-9497.2012.01.006 |
work_keys_str_mv | AT zhengzhihaozhèngzhìhào approximationtoclothoidinsamelengthviag1quinticpythogreanhodographsplinesyòngg15cìphqūxiànděnghúzhǎngbījìnclothoidqūxiàn |