Approximation to clothoid in same length via G1 quintic Pythogrean Hodograph splines(用G1 5次PH曲线等弧长逼近clothoid曲线)
PH曲线是弧长为多项式的Bézier曲线,其等距线可用有理多项式表示.由clothoid曲线端点的G1 Hermite插值条件,构造对应等弧长的最佳G1 5次PH插值曲线,以此作为逼近.利用微分几何中的Frenet-Serret公式和经典的Taylor展开式,推导该逼近方式的误差、等距线误差和曲率误差.最后,给出在误差范围内,将clothoid曲线转化为等弧长G1 5次PH样条及等距线生成的算法....
Main Author: | ZHENGZhi-hao(郑志浩) |
---|---|
Format: | Article |
Language: | zho |
Published: |
Zhejiang University Press
2012-01-01
|
Series: | Zhejiang Daxue xuebao. Lixue ban |
Subjects: | |
Online Access: | https://doi.org/10.3785/j.issn.1008-9497.2012.01.006 |
Similar Items
-
Constructing offset to cubic B-spline curve by quintic Pythagorean-Hodograph spline curve(用五次Pythagorean-Hodograph样条曲线构造三次B样条曲线等距线)
by: ZHENGZhi-hao(郑志浩), et al.
Published: (2005-07-01) -
A new method for approximation of rational curves by parametric polynomial curves(一种用多项式曲线逼近有理曲线的新方法)
by: YANGLianxi(杨连喜), et al.
Published: (2015-01-01) -
Interpolating G2 continuous closed curve with rational conics(基于有理二次Bézier曲线段的G2连续闭曲线插值)
by: CHENGJin-hui(陈锦辉)
Published: (2001-03-01) -
A method on polynomial curve approximation of rational curves based on the discrete interpolation(一种基于离散插值的多项式曲线逼近有理曲线的方法)
by: LIGuangyao(李光耀), et al.
Published: (2017-11-01) -
Blending of the trigonometric polynomial spline curve and surface with arbitrary continuous order(任意阶参数连续的三角多项式样条曲线曲面调配)
by: LIUHuayong(刘华勇), et al.
Published: (2014-07-01)