Numerical Analysis of Wick-Type Two-Phase Mechanically Pumped Fluid Loop for Thermal Control of Electric Aircraft Motors

The development of thermal control systems has become an important issue in next-generation electric aircraft design due to the increase in heat exhausted with electrification. In this paper, a wick-type two-phase mechanically pumped fluid loop system for future electric aircraft was proposed throug...

Full description

Bibliographic Details
Main Authors: Xinyu Chang, Koji Fujita, Hiroki Nagai
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/5/1800
Description
Summary:The development of thermal control systems has become an important issue in next-generation electric aircraft design due to the increase in heat exhausted with electrification. In this paper, a wick-type two-phase mechanically pumped fluid loop system for future electric aircraft was proposed through the investigation of current two-phase flow cooling technology. Taking the experimental electric aircraft X-57 as an example, a wick-type two-phase mechanically pumped fluid loop with four evaporators for transporting 12 kW of waste heat within an 80 °C temperature limit was proposed and its feasibility was confirmed. A numerical model was constructed and validated to predict the operating characteristics of a two-phase mechanically pumped fluid loop. The optimal pump outputs under-even and uneven heat load conditions and was investigated for the first time by considering the vapor-liquid separation conditions in each flow path and the power consumption of the pump. Under the optimal pump output condition, the operating characteristics of the wick-type two-phase mechanically pumped fluid loop system were calculated. The calculation results indicate that the proposed wick-type two-phase mechanically pumped fluid loop is suitable as the thermal control system for an X-57 electric aircraft motor, as the calculation results satisfied the operational requirements of the motor.
ISSN:1996-1073