Bactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1,4-dihydropyridines

Katarzyna Niemirowicz-Laskowska,1 Katarzyna Głuszek,1 Ewelina Piktel,1 Karlis Pajuste,2 Bonita Durnaś,3 Grzegorz Król,3 Agnieszka Z Wilczewska,4 Paul A Janmey,5 Aiva Plotniece,2 Robert Bucki1 1Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok,...

Full description

Bibliographic Details
Main Authors: Niemirowicz-Laskowska K, Głuszek K, Piktel E, Pajuste K, Durnaś B, Król G, Wilczewska AZ, Janmey PA, Plotniece A, Bucki R
Format: Article
Language:English
Published: Dove Medical Press 2018-06-01
Series:International Journal of Nanomedicine
Subjects:
Online Access:https://www.dovepress.com/bactericidal-and-immunomodulatory-properties-of-magnetic-nanoparticles-peer-reviewed-article-IJN
_version_ 1819044048405528576
author Niemirowicz-Laskowska K
Głuszek K
Piktel E
Pajuste K
Durnaś B
Król G
Wilczewska AZ
Janmey PA
Plotniece A
Bucki R
author_facet Niemirowicz-Laskowska K
Głuszek K
Piktel E
Pajuste K
Durnaś B
Król G
Wilczewska AZ
Janmey PA
Plotniece A
Bucki R
author_sort Niemirowicz-Laskowska K
collection DOAJ
description Katarzyna Niemirowicz-Laskowska,1 Katarzyna Głuszek,1 Ewelina Piktel,1 Karlis Pajuste,2 Bonita Durnaś,3 Grzegorz Król,3 Agnieszka Z Wilczewska,4 Paul A Janmey,5 Aiva Plotniece,2 Robert Bucki1 1Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland; 2Laboratory of Membrane Active Compounds and β-Diketones, Latvian Institute of Organic Synthesis, Riga, Latvia; 3Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Kielce, 4Institute of Chemistry, University of Bialystok, Białystok, Poland; 5Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA Background: 1,4-Dihydropyridine (1,4-DHP) and its derivatives are well-known calcium channel blockers with antiarrhythmic and antihypertensive activities. These compounds exhibit pleiotropic effects including antimicrobial activities that rely on their positive charge and amphipathic nature. Use of magnetic nanoparticles (MNPs) as carriers of 1,4-DHP modulates their properties and enables improved formulations with higher efficacy and less toxicity. Methods: In this study, the antimicrobial and immunomodulatory activities of novel 1,4-DHP derivatives in free form and immobilized on MNPs were determined by evaluating pathogen outgrowth and proinflammatory cytokine release in experimental settings that involve incubation of various 1,4-DHPs with clinical isolates of bacteria or fungi as well as mammalian cell culture models. Results: Conventional immobilization of 1,4-DHP on aminosilane-coated MNPs markedly enhances their antimicrobial activity compared to nonimmobilized molecules, in part because of the higher affinity of these nanosystems for bacterial cell wall components in the presence of human body fluids. Conclusion: Optimized nanosystems are characterized by improved biocompatibility and higher anti-inflammatory properties that provide new opportunities for the therapy of infectious diseases. Keywords: magnetic nanoparticles, 1,4-dihydropyridine, antibacterial, antifungal, immunomodulatory properties
first_indexed 2024-12-21T10:06:29Z
format Article
id doaj.art-e32e7d4c62804fc99358142898c368ef
institution Directory Open Access Journal
issn 1178-2013
language English
last_indexed 2024-12-21T10:06:29Z
publishDate 2018-06-01
publisher Dove Medical Press
record_format Article
series International Journal of Nanomedicine
spelling doaj.art-e32e7d4c62804fc99358142898c368ef2022-12-21T19:07:49ZengDove Medical PressInternational Journal of Nanomedicine1178-20132018-06-01Volume 133411342438759Bactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1,4-dihydropyridinesNiemirowicz-Laskowska KGłuszek KPiktel EPajuste KDurnaś BKról GWilczewska AZJanmey PAPlotniece ABucki RKatarzyna Niemirowicz-Laskowska,1 Katarzyna Głuszek,1 Ewelina Piktel,1 Karlis Pajuste,2 Bonita Durnaś,3 Grzegorz Król,3 Agnieszka Z Wilczewska,4 Paul A Janmey,5 Aiva Plotniece,2 Robert Bucki1 1Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland; 2Laboratory of Membrane Active Compounds and β-Diketones, Latvian Institute of Organic Synthesis, Riga, Latvia; 3Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, Kielce, 4Institute of Chemistry, University of Bialystok, Białystok, Poland; 5Department of Physiology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA Background: 1,4-Dihydropyridine (1,4-DHP) and its derivatives are well-known calcium channel blockers with antiarrhythmic and antihypertensive activities. These compounds exhibit pleiotropic effects including antimicrobial activities that rely on their positive charge and amphipathic nature. Use of magnetic nanoparticles (MNPs) as carriers of 1,4-DHP modulates their properties and enables improved formulations with higher efficacy and less toxicity. Methods: In this study, the antimicrobial and immunomodulatory activities of novel 1,4-DHP derivatives in free form and immobilized on MNPs were determined by evaluating pathogen outgrowth and proinflammatory cytokine release in experimental settings that involve incubation of various 1,4-DHPs with clinical isolates of bacteria or fungi as well as mammalian cell culture models. Results: Conventional immobilization of 1,4-DHP on aminosilane-coated MNPs markedly enhances their antimicrobial activity compared to nonimmobilized molecules, in part because of the higher affinity of these nanosystems for bacterial cell wall components in the presence of human body fluids. Conclusion: Optimized nanosystems are characterized by improved biocompatibility and higher anti-inflammatory properties that provide new opportunities for the therapy of infectious diseases. Keywords: magnetic nanoparticles, 1,4-dihydropyridine, antibacterial, antifungal, immunomodulatory propertieshttps://www.dovepress.com/bactericidal-and-immunomodulatory-properties-of-magnetic-nanoparticles-peer-reviewed-article-IJNmagnetic nanoparticles14-dihydropyridineantibacterialantifungalimmunomodulatory properties
spellingShingle Niemirowicz-Laskowska K
Głuszek K
Piktel E
Pajuste K
Durnaś B
Król G
Wilczewska AZ
Janmey PA
Plotniece A
Bucki R
Bactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1,4-dihydropyridines
International Journal of Nanomedicine
magnetic nanoparticles
1
4-dihydropyridine
antibacterial
antifungal
immunomodulatory properties
title Bactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1,4-dihydropyridines
title_full Bactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1,4-dihydropyridines
title_fullStr Bactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1,4-dihydropyridines
title_full_unstemmed Bactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1,4-dihydropyridines
title_short Bactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1,4-dihydropyridines
title_sort bactericidal and immunomodulatory properties of magnetic nanoparticles functionalized by 1 4 dihydropyridines
topic magnetic nanoparticles
1
4-dihydropyridine
antibacterial
antifungal
immunomodulatory properties
url https://www.dovepress.com/bactericidal-and-immunomodulatory-properties-of-magnetic-nanoparticles-peer-reviewed-article-IJN
work_keys_str_mv AT niemirowiczlaskowskak bactericidalandimmunomodulatorypropertiesofmagneticnanoparticlesfunctionalizedby14dihydropyridines
AT głuszekk bactericidalandimmunomodulatorypropertiesofmagneticnanoparticlesfunctionalizedby14dihydropyridines
AT piktele bactericidalandimmunomodulatorypropertiesofmagneticnanoparticlesfunctionalizedby14dihydropyridines
AT pajustek bactericidalandimmunomodulatorypropertiesofmagneticnanoparticlesfunctionalizedby14dihydropyridines
AT durnasb bactericidalandimmunomodulatorypropertiesofmagneticnanoparticlesfunctionalizedby14dihydropyridines
AT krolg bactericidalandimmunomodulatorypropertiesofmagneticnanoparticlesfunctionalizedby14dihydropyridines
AT wilczewskaaz bactericidalandimmunomodulatorypropertiesofmagneticnanoparticlesfunctionalizedby14dihydropyridines
AT janmeypa bactericidalandimmunomodulatorypropertiesofmagneticnanoparticlesfunctionalizedby14dihydropyridines
AT plotniecea bactericidalandimmunomodulatorypropertiesofmagneticnanoparticlesfunctionalizedby14dihydropyridines
AT buckir bactericidalandimmunomodulatorypropertiesofmagneticnanoparticlesfunctionalizedby14dihydropyridines