Multi-twist polarization ribbon topologies in highly-confined optical fields

Electromagnetic plane waves, solutions to Maxwell’s equations, are said to be ‘transverse’ in vacuum. Namely, the waves’ oscillatory electric and magnetic fields are confined within a plane transverse to the waves’ propagation direction. Under tight-focusing conditions however, the field can exhibit...

Full description

Bibliographic Details
Main Authors: Thomas Bauer, Peter Banzer, Frédéric Bouchard, Sergej Orlov, Lorenzo Marrucci, Enrico Santamato, Robert W Boyd, Ebrahim Karimi, Gerd Leuchs
Format: Article
Language:English
Published: IOP Publishing 2019-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ab171b
Description
Summary:Electromagnetic plane waves, solutions to Maxwell’s equations, are said to be ‘transverse’ in vacuum. Namely, the waves’ oscillatory electric and magnetic fields are confined within a plane transverse to the waves’ propagation direction. Under tight-focusing conditions however, the field can exhibit longitudinal electric or magnetic components, transverse spin angular momentum, or non-trivial topologies such as Möbius strips. Here, we show that when a suitably spatially structured beam is tightly focused, a three-dimensional polarization topology in the form of a ribbon with two full twists appears in the focal volume. We study experimentally the stability and dynamics of the observed polarization ribbon by exploring its topological structure for various radii upon focusing and for different propagation planes.
ISSN:1367-2630