Increased NLRP1 mRNA and Protein Expression Suggests Inflammasome Activation in the Dorsolateral Prefrontal and Medial Orbitofrontal Cortex in Schizophrenia

Schizophrenia is a complex mental condition, with key symptoms marked for diagnosis including delusions, hallucinations, disorganized thinking, reduced emotional expression, and social dysfunction. In the context of major developmental hypotheses of schizophrenia, notably those concerning maternal i...

Full description

Bibliographic Details
Main Authors: Ena Španić Popovački, Dora Vogrinc, Heidi R. Fuller, Lea Langer Horvat, Davor Mayer, Janja Kopić, Klara Pintarić, Mirjana Babić Leko, Mihaela Pravica, Željka Krsnik, Darko Marčinko, Marina Šagud, Patrick R. Hof, Mihovil Mladinov, Goran Šimić
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/14/3/302
Description
Summary:Schizophrenia is a complex mental condition, with key symptoms marked for diagnosis including delusions, hallucinations, disorganized thinking, reduced emotional expression, and social dysfunction. In the context of major developmental hypotheses of schizophrenia, notably those concerning maternal immune activation and neuroinflammation, we studied <i>NLRP1</i> expression and content in the postmortem brain tissue of 10 schizophrenia and 10 control subjects. In the medial orbitofrontal cortex (Brodmann’s area 11/12) and dorsolateral prefrontal cortex (area 46) from both hemispheres of six schizophrenia subjects, the <i>NLRP1</i> mRNA expression was significantly higher than in six control brains (<i>p</i> < 0.05). As the expression difference was highest for the medial orbitofrontal cortex in the right hemisphere, we assessed NLRP1-immunoreactive pyramidal neurons in layers III, V, and VI in the medial orbitofrontal cortex in the right hemisphere of seven schizophrenia and five control brains. Compared to controls, we quantified a significantly higher number of NLRP1-positive pyramidal neurons in the schizophrenia brains (<i>p</i> < 0.01), suggesting NLRP1 inflammasome activation in schizophrenia subjects. Layer III pyramidal neuron dysfunction aligns with working memory deficits, while impairments of pyramidal neurons in layers V and VI likely disrupt predictive processing. We propose NLRP1 inflammasome as a potential biomarker and therapeutic target in schizophrenia.
ISSN:2218-273X