Exploring Evaluation Methods for Interpretable Machine Learning: A Survey
In recent times, the progress of machine learning has facilitated the development of decision support systems that exhibit predictive accuracy, surpassing human capabilities in certain scenarios. However, this improvement has come at the cost of increased model complexity, rendering them black-box m...
المؤلفون الرئيسيون: | Nourah Alangari, Mohamed El Bachir Menai, Hassan Mathkour, Ibrahim Almosallam |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
MDPI AG
2023-08-01
|
سلاسل: | Information |
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.mdpi.com/2078-2489/14/8/469 |
مواد مشابهة
-
Intrinsically Interpretable Gaussian Mixture Model
حسب: Nourah Alangari, وآخرون
منشور في: (2023-03-01) -
Making Sense of Machine Learning: A Review of Interpretation Techniques and Their Applications
حسب: Ainura Tursunalieva, وآخرون
منشور في: (2024-01-01) -
Opening the Black-Box: Extracting Medical Reasoning from Machine Learning Predictions
حسب: Marius FERSIGAN, وآخرون
منشور في: (2021-09-01) -
Effects of Class Imbalance Countermeasures on Interpretability
حسب: David Cemernek, وآخرون
منشور في: (2024-01-01) -
Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
حسب: Vanessa Buhrmester, وآخرون
منشور في: (2021-12-01)