Exploring Evaluation Methods for Interpretable Machine Learning: A Survey
In recent times, the progress of machine learning has facilitated the development of decision support systems that exhibit predictive accuracy, surpassing human capabilities in certain scenarios. However, this improvement has come at the cost of increased model complexity, rendering them black-box m...
Hlavní autoři: | Nourah Alangari, Mohamed El Bachir Menai, Hassan Mathkour, Ibrahim Almosallam |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2023-08-01
|
Edice: | Information |
Témata: | |
On-line přístup: | https://www.mdpi.com/2078-2489/14/8/469 |
Podobné jednotky
-
Intrinsically Interpretable Gaussian Mixture Model
Autor: Nourah Alangari, a další
Vydáno: (2023-03-01) -
Making Sense of Machine Learning: A Review of Interpretation Techniques and Their Applications
Autor: Ainura Tursunalieva, a další
Vydáno: (2024-01-01) -
Opening the Black-Box: Extracting Medical Reasoning from Machine Learning Predictions
Autor: Marius FERSIGAN, a další
Vydáno: (2021-09-01) -
Effects of Class Imbalance Countermeasures on Interpretability
Autor: David Cemernek, a další
Vydáno: (2024-01-01) -
Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
Autor: Vanessa Buhrmester, a další
Vydáno: (2021-12-01)