Exploring Evaluation Methods for Interpretable Machine Learning: A Survey
In recent times, the progress of machine learning has facilitated the development of decision support systems that exhibit predictive accuracy, surpassing human capabilities in certain scenarios. However, this improvement has come at the cost of increased model complexity, rendering them black-box m...
Κύριοι συγγραφείς: | Nourah Alangari, Mohamed El Bachir Menai, Hassan Mathkour, Ibrahim Almosallam |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
MDPI AG
2023-08-01
|
Σειρά: | Information |
Θέματα: | |
Διαθέσιμο Online: | https://www.mdpi.com/2078-2489/14/8/469 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Intrinsically Interpretable Gaussian Mixture Model
ανά: Nourah Alangari, κ.ά.
Έκδοση: (2023-03-01) -
Making Sense of Machine Learning: A Review of Interpretation Techniques and Their Applications
ανά: Ainura Tursunalieva, κ.ά.
Έκδοση: (2024-01-01) -
Opening the Black-Box: Extracting Medical Reasoning from Machine Learning Predictions
ανά: Marius FERSIGAN, κ.ά.
Έκδοση: (2021-09-01) -
Effects of Class Imbalance Countermeasures on Interpretability
ανά: David Cemernek, κ.ά.
Έκδοση: (2024-01-01) -
Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
ανά: Vanessa Buhrmester, κ.ά.
Έκδοση: (2021-12-01)