Exploring Evaluation Methods for Interpretable Machine Learning: A Survey
In recent times, the progress of machine learning has facilitated the development of decision support systems that exhibit predictive accuracy, surpassing human capabilities in certain scenarios. However, this improvement has come at the cost of increased model complexity, rendering them black-box m...
Päätekijät: | Nourah Alangari, Mohamed El Bachir Menai, Hassan Mathkour, Ibrahim Almosallam |
---|---|
Aineistotyyppi: | Artikkeli |
Kieli: | English |
Julkaistu: |
MDPI AG
2023-08-01
|
Sarja: | Information |
Aiheet: | |
Linkit: | https://www.mdpi.com/2078-2489/14/8/469 |
Samankaltaisia teoksia
-
Intrinsically Interpretable Gaussian Mixture Model
Tekijä: Nourah Alangari, et al.
Julkaistu: (2023-03-01) -
Making Sense of Machine Learning: A Review of Interpretation Techniques and Their Applications
Tekijä: Ainura Tursunalieva, et al.
Julkaistu: (2024-01-01) -
Opening the Black-Box: Extracting Medical Reasoning from Machine Learning Predictions
Tekijä: Marius FERSIGAN, et al.
Julkaistu: (2021-09-01) -
Effects of Class Imbalance Countermeasures on Interpretability
Tekijä: David Cemernek, et al.
Julkaistu: (2024-01-01) -
Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
Tekijä: Vanessa Buhrmester, et al.
Julkaistu: (2021-12-01)