Exploring Evaluation Methods for Interpretable Machine Learning: A Survey
In recent times, the progress of machine learning has facilitated the development of decision support systems that exhibit predictive accuracy, surpassing human capabilities in certain scenarios. However, this improvement has come at the cost of increased model complexity, rendering them black-box m...
Main Authors: | Nourah Alangari, Mohamed El Bachir Menai, Hassan Mathkour, Ibrahim Almosallam |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
MDPI AG
2023-08-01
|
סדרה: | Information |
נושאים: | |
גישה מקוונת: | https://www.mdpi.com/2078-2489/14/8/469 |
פריטים דומים
-
Intrinsically Interpretable Gaussian Mixture Model
מאת: Nourah Alangari, et al.
יצא לאור: (2023-03-01) -
Making Sense of Machine Learning: A Review of Interpretation Techniques and Their Applications
מאת: Ainura Tursunalieva, et al.
יצא לאור: (2024-01-01) -
Opening the Black-Box: Extracting Medical Reasoning from Machine Learning Predictions
מאת: Marius FERSIGAN, et al.
יצא לאור: (2021-09-01) -
Effects of Class Imbalance Countermeasures on Interpretability
מאת: David Cemernek, et al.
יצא לאור: (2024-01-01) -
Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
מאת: Vanessa Buhrmester, et al.
יצא לאור: (2021-12-01)