Exploring Evaluation Methods for Interpretable Machine Learning: A Survey
In recent times, the progress of machine learning has facilitated the development of decision support systems that exhibit predictive accuracy, surpassing human capabilities in certain scenarios. However, this improvement has come at the cost of increased model complexity, rendering them black-box m...
Главные авторы: | Nourah Alangari, Mohamed El Bachir Menai, Hassan Mathkour, Ibrahim Almosallam |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
MDPI AG
2023-08-01
|
Серии: | Information |
Предметы: | |
Online-ссылка: | https://www.mdpi.com/2078-2489/14/8/469 |
Схожие документы
-
Intrinsically Interpretable Gaussian Mixture Model
по: Nourah Alangari, и др.
Опубликовано: (2023-03-01) -
Making Sense of Machine Learning: A Review of Interpretation Techniques and Their Applications
по: Ainura Tursunalieva, и др.
Опубликовано: (2024-01-01) -
Opening the Black-Box: Extracting Medical Reasoning from Machine Learning Predictions
по: Marius FERSIGAN, и др.
Опубликовано: (2021-09-01) -
Effects of Class Imbalance Countermeasures on Interpretability
по: David Cemernek, и др.
Опубликовано: (2024-01-01) -
Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey
по: Vanessa Buhrmester, и др.
Опубликовано: (2021-12-01)