Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
المؤلفون الرئيسيون: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Springer
2024-10-01
|
سلاسل: | Discover Artificial Intelligence |
الموضوعات: | |
الوصول للمادة أونلاين: | https://doi.org/10.1007/s44163-024-00180-x |
مواد مشابهة
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
حسب: Félix Dumais, وآخرون
منشور في: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
حسب: Fahad Almuqhim, وآخرون
منشور في: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
حسب: Roohi Sille, وآخرون
منشور في: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
حسب: J. Andrew, وآخرون
منشور في: (2021-01-01) -
Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Approach
حسب: Md Amran Hossen, وآخرون
منشور في: (2024-06-01)