Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Egile Nagusiak: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
Formatua: | Artikulua |
Hizkuntza: | English |
Argitaratua: |
Springer
2024-10-01
|
Saila: | Discover Artificial Intelligence |
Gaiak: | |
Sarrera elektronikoa: | https://doi.org/10.1007/s44163-024-00180-x |
Antzeko izenburuak
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
nork: Félix Dumais, et al.
Argitaratua: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
nork: Fahad Almuqhim, et al.
Argitaratua: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
nork: Roohi Sille, et al.
Argitaratua: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
nork: J. Andrew, et al.
Argitaratua: (2021-01-01) -
Invertible Autoencoder for Domain Adaptation
nork: Yunfei Teng, et al.
Argitaratua: (2019-03-01)