Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Auteurs principaux: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
Format: | Article |
Langue: | English |
Publié: |
Springer
2024-10-01
|
Collection: | Discover Artificial Intelligence |
Sujets: | |
Accès en ligne: | https://doi.org/10.1007/s44163-024-00180-x |
Documents similaires
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
par: Félix Dumais, et autres
Publié: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
par: Fahad Almuqhim, et autres
Publié: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
par: Roohi Sille, et autres
Publié: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
par: J. Andrew, et autres
Publié: (2021-01-01) -
Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Approach
par: Md Amran Hossen, et autres
Publié: (2024-06-01)