Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Main Authors: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
Springer
2024-10-01
|
סדרה: | Discover Artificial Intelligence |
נושאים: | |
גישה מקוונת: | https://doi.org/10.1007/s44163-024-00180-x |
פריטים דומים
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
מאת: Félix Dumais, et al.
יצא לאור: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
מאת: Fahad Almuqhim, et al.
יצא לאור: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
מאת: Roohi Sille, et al.
יצא לאור: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
מאת: J. Andrew, et al.
יצא לאור: (2021-01-01) -
Invertible Autoencoder for Domain Adaptation
מאת: Yunfei Teng, et al.
יצא לאור: (2019-03-01)