Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
Glavni autori: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
Format: | Članak |
Jezik: | English |
Izdano: |
Springer
2024-10-01
|
Serija: | Discover Artificial Intelligence |
Teme: | |
Online pristup: | https://doi.org/10.1007/s44163-024-00180-x |
Slični predmeti
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
od: Félix Dumais, i dr.
Izdano: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
od: Fahad Almuqhim, i dr.
Izdano: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
od: Roohi Sille, i dr.
Izdano: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
od: J. Andrew, i dr.
Izdano: (2021-01-01) -
Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Approach
od: Md Amran Hossen, i dr.
Izdano: (2024-06-01)