Segmentation of MR images for brain tumor detection using autoencoder neural network
Abstract Medical images often require segmenting into different regions in the first analysis stage. Relevant features are selected to differentiate various regions from each other, and the images are segmented into meaningful (anatomically significant) regions based on these features. The purpose o...
主要な著者: | Farnaz Hoseini, Shohreh Shamlou, Milad Ahmadi-Gharehtoragh |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Springer
2024-10-01
|
シリーズ: | Discover Artificial Intelligence |
主題: | |
オンライン・アクセス: | https://doi.org/10.1007/s44163-024-00180-x |
類似資料
-
FIESTA: Autoencoders for accurate fiber segmentation in tractography
著者:: Félix Dumais, 等
出版事項: (2023-10-01) -
ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
著者:: Fahad Almuqhim, 等
出版事項: (2021-04-01) -
A Novel Generative Adversarial Network-Based Approach for Automated Brain Tumour Segmentation
著者:: Roohi Sille, 等
出版事項: (2023-01-01) -
Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder
著者:: J. Andrew, 等
出版事項: (2021-01-01) -
Deep Learning for Skeleton-Based Human Activity Segmentation: An Autoencoder Approach
著者:: Md Amran Hossen, 等
出版事項: (2024-06-01)